Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T01:43:09.016Z Has data issue: false hasContentIssue false

Parameter Optimization of a Microfabricated Surface Acoustic Wave Sensor for Inert Gas Detection*

Published online by Cambridge University Press:  10 February 2011

S. Ahuja*
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439
A. DiVenere
Affiliation:
Materials Research Center, Northwestern University, Evanston, IL 60208
C. Ross
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439
H. T. Chien
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439
A. C. Raptis
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

This work is related to designing, fabricating, and testing a surface acoustic wave sensor to be used for detecting metastable inert gases, particularly helium. The assembly consists of two microsensor configurations: (a) a reference device with no deposition at the delay line and (b) a sensing device with an Au-activated TiO2 e-beam-deposited thin film on the delay line. The interdigitated transducers and delay lines are fabricated by photolithography techniques on a single Y-cut LiNbo3 substrate oriented for Z-propagation of the acoustic waves. Variation in electrical conductivity of the Au-activated TiO2 film due to exposure to metastable He is translated as a frequency change in the assembly. Various characteristics of the surface acoustic microsensor have been studied to better understand and optimize the variation of acoustic wave velocity and the operating frequency of the microdevice. Methods for the TiO2 thin-film deposition are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Industrial Technologies, under Contract W-31–109-ENG-38.

References

REFERENCES

[1] Martin, S. J., Schweizer, K. S., Schwartz, S. S., and Gunshor, R. L., IEEE Ultrasonics Symposium, pp. 207212 (1984).Google Scholar
[2] Joshi, S. G., Sensors and Actuators, Vol. 44A, pp. 191197 (1994).Google Scholar
[3] Seifert, F., Buist, W.-E., and Ruppel, C., Sensors and Actuators, Vol. 44A, pp. 231239 (1994).Google Scholar
[4] Martin, B. A., Wenzel, S. W., and White, R. M., Sensors and Actuators, Vol. A21–A23, pp. 704708 (1990).Google Scholar
[5] Gatti, E., Palma, A., and Verona, E., Sensors and Actuators, Vol. 4, pp. 4554 (1983).Google Scholar
[6] Hoummady, M. and Hauden, D., Sensors and Actuators, Vol. 44A, pp. 177182 (1994).Google Scholar
[7] Wohltjen, H., Sensors and Actuators, Vol. 5, pp. 307325 (1984).Google Scholar
[8] Watson, G. W., Ketchpel, R. D., and Staples, E. J., IEEE Ultrasonics Symposium, pp. 253256 (1992).Google Scholar
[9] Kupriyanov, L. Yu., Tsivenko, V. I., and Myasnikov, I. A., Zh. Fiz. Khim., Vol. 58, pp. 11561162 (1984).Google Scholar
[10] Kupriyanov, L. Y. and Tsivenko, V. I., Rus. J. Phy. Chem., Vol. 61 (3), pp. 430431 (1987).Google Scholar
[11] Sheldon, J. W., Anderson, E. D., and Hardy, K. A., J. Appl. Phys., Vol. 56 (3), pp. 798800 (1984).Google Scholar
[12] Muller-Fiedler, R., Schlemmer, P., Jung, K., Hotop, H., and Ehrhardt, H., J. Phys. B: At. Mol. Phys., Vol. 17, pp. 259268 (1984).Google Scholar
[13] Ahuja, S., Hersam, M., Ross, C., Chien, H.-T., and Raptis, A. C., IEEE Ultrasonics Symposium (1996).Google Scholar
[14] Bianchi, L., JOM, pp. 4547 (1991).Google Scholar
[15] Pulkner, H. K., Paesold, G., and Ritter, E., Appl. Opt., Vol. 15, pp. 29862991 (1976).Google Scholar