Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T20:47:56.156Z Has data issue: false hasContentIssue false

Novel Ultrathin Mg Nanoblades for Hydrogen Storage

Published online by Cambridge University Press:  31 January 2011

Fu Tang
Affiliation:
Fu.Tang.2@asu.edu, Arizona State University, Physics, Tempe, Arizona, United States
Gwo Ching Wang
Affiliation:
wangg@rpi.edu, Rensselaer Polytechnic Institute, Physics, 1C25 Science Center, 110 8th Street, Troy, New York, 12180, United States, 518 276 8387, 518 276 6680
Toh-Ming Lu
Affiliation:
lut@rpi.edu, Rensselaer Polytechnic Institute, Physics, Troy, New York, United States
Get access

Abstract

We describe the growth of novel ultrathin Mg crystalline nanoblades by oblique angle vapor deposition. These nanoblades were then coated with catalyst Pd and hydrogenated into magnesium hydride MgH2. In situ thermal desorption spectroscopy study showed a low H desorption temperature at ∼365 K. In situ reflection high energy electron diffraction patterns were used to study the temperature dependent structure and composition changes during the de-hydrogenation of Pd coated MgH2 nanoblades. The diffraction rings reveal the formation of alloys of Pd and Mg when the temperature is over ∼480 K. Transmission electron microscopy diffraction also supports the formation of Pd and Mg alloys. This alloying reduces the cycling capability of Mg hydride. The de-hydrogenation of MgH2 introduces a strain at the bilayer interface between MgH2 and Mg resultant from 30% volume reduction from MgH2 to Mg and formed curved nanoblades as evident by scanning electron microscopy images. Designing factors of recyclable simple hydrides will be discussed.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sakintuna, Billur Lamari-Darkrim, Farida, and Hirscher, Michael Internatioanl Journal of Hydrogen Energy 32 1121 (2007).Google Scholar
[2] Zhao, Dan Yuan, Daqiang and Zhou, Hong-Cai, Energy and Environmental Science 1 222 (2008).Google Scholar
[3] Wang, Lifeng and Yang, Ralph T. Energy and Environmental Science 268 268 (2008).Google Scholar
[4] Léon, A., Knystautas, E.J. Huot, J. and Schulz, R. J. of Alloys and Compounds 345 158 (2002).Google Scholar
[5] Léon, A., Knystautas, E.J. Huot, J. and Schulz, R. Thin Solid Films 496 683 (2006).Google Scholar
[6] Nørskov, J.K., , Houmøller, Johansson, P.K. and Lundqvist, B.I. Phys. Rev. Lett 46 257 (1981).Google Scholar
[7] Sprunger, P. T. and Plummer, E. W. Chemical Physics Letters 187 (6), 559 (1991).Google Scholar
[8] Zaluska, A. Zaluski, L. and Strom-Olsen, J.O., Appl. Phys. A72 157 (2001).Google Scholar
[9] Zaluska, A. Zaluski, L. and Strom-Olsen, J.O., “Nanocrystalline magnesium for hydrogen storage”, J. of Alloys and Compounds 288 217 (1999).Google Scholar
[10] Schulz, R. Liang, G. Huot, J. Boily, S. Lalande, G. Denis, M.C. and Dodelet, J.P. Materials Sciences and Engineering A267 240 (1999).Google Scholar
[11] Zeppelin, F. Reule, H. and Hirscher, M. J. of Alloys and Compounds 330-332 723 (2002).Google Scholar
[12] Schulz, R. Huot, J. Liang, G. Boily, S. and Neste, A. Van, Materials Science Forum 312-314 615 (1999).Google Scholar
[13] Ryden, J. Hjorvarsson, B. Karlsson, T. E. Krozer, A. and Kasemo, B. J. of the Less-Common Metals 152 (2), 295 (1989).Google Scholar
[14] Krozer, A. and Kasemo, B. J. Vac. Sci. Technol. A5 (4), 1003 (1987).Google Scholar
[15] Higuchi, K. Yamamoto, K. Kajioka, H. Toiyama, K. Honda, M. Orimo, S. and Fujii, H. J. of Alloys and Compounds 330-332 526 (2002).Google Scholar
[16] Do, T. Splinter, S.J. Chen, C. and McIntyre, N.S. Surface Science 387 192 (1997).Google Scholar
[17] Hjort, P. Krozer, A. and Kasemo, B. J. of Alloys and Compounds 237 74 (1996).Google Scholar
[18] Tang, F. Wang, G.C. and Lu, T.M. J. Appl. Phys. 102 014306 (2007).Google Scholar
[19] Tang, F. Parker, T. Li, H.F. Wang, G.C. and Lu, T.M. J. of Nanosci. and Nanotechnol. 7 3239 (2007).Google Scholar
[20] Tang, F. Parker, T. Li, H.F. Wang, G.C. and Lu, T.M. Nanotechnology 19 465706 (2008).Google Scholar
[21] He, Yuping and Zhao, Yiping Nanotechnology 20 204008 (2009).Google Scholar
[22] Tait, R.N. Smy, T. and Brett, M.J. Thin Solid Films 226 196 (1993).Google Scholar
[23] Robbie, K. and Brett, M.J. J. of Vacuum Science & Technology A15 (3), 1460 (1997).Google Scholar
[24] Tang, F. Karabacak, T. Morrow, P. Gaire, C. Wang, G.C. and Lu, T.M. Phys. Rev. B72 165402 (2005).Google Scholar
[25] Checchetto, R. Bazzanella, N. Miotello, A. Brusa, R. S. Zecca, A. and Mengucci, A. J. Appl. Phys. 95(4), 1989 (2004).Google Scholar
[26] Higuchi, K. Kajioka, H. Toiyama, K. Fujii, H. Orimo, S. and Kikuchi, Y. J. of Alloys and Compounds 293 484 (1999).Google Scholar
[27] Tang, F. Yuan, W. Lu, T.M. and Wang, G.C. J. of Appl. Phys. 104 033534 (2008).Google Scholar
[28] Adreasen, A. Sørensen, M. B., Burkarl, R. Møller, B., Molenbroek, A.M. Pedersen, A.S. Vegge, T. and Jensen, T.R. Appl. Phys. A82, 515521 (2006).Google Scholar
[29] Pelletier, J. F. Huot, J. Sutton, M. Schulz, R. Sandy, A. R. Lurio, L. B. and S. Mochrie, G. J. Phys. Rev. B63 052103 (2001).Google Scholar
[30] Akiba, E. and Nakamura, Y. J. Crystallogr. Soc. Jpn. (Japan) 46 38 (2004).Google Scholar
[31] Stan, C. Asano, K. Sakaki, K. Akiba, E. Couillaud, S. and Bobet, J.L. International Journal of Hydrogen Energy 34 3038 (2009).Google Scholar
[32] Tang, F. Parker, T. Wang, G.C. and Lu, T.M. Journal of Physics D: Applied Physics 40, R427 (2007).Google Scholar
[33] Drotar, J.T. Lu, T.M. and Wang, G.C. J. of Appl. Phys 96 (12), 7071 (2004).Google Scholar
[34] Krozer, A. and Kasemo, B. J. of the Less-Common Metals 160 323 (1990).Google Scholar
[35] Kumar, Sanjiv Reddy, G.L.N. and Raju, V.S. J. of Alloys and Compounds 476 500 (2009).Google Scholar
[36] Checchetto, R. Brusa, R.S. Bazzanella, N. Karwasz, G.P. Spagolla, M. Miotello, A. Mengucci, P. and Cristoforo, A. Di, Thin Solid Films 469-470 350 (2004).Google Scholar
[37] Huang, Minghuang Boone, Carl Roberts, Michelle Savage, Don E. Lagally, Max G. Shaji, Nakul Qin, Hua Blick, Robert Nairn, John A. and Liu, Feng Advanced Materials 17 2860 (2005).Google Scholar
[38] Du, A.J. Sean Smith, C. Yao, X.D. and Lu, G.Q. Surface Science 600 1854 (2006).Google Scholar
[39] L.Berlouis, E.A. Honnpr, P. Hall, P.J. Morris, S. and Dodd, S.B. J. Mater. Sci. 41 6403 (2006).Google Scholar
[40] Schimmel, H.G. Johnson, M.R. Kearley, G.J. Ramirez-Cuesta, A.J., Hout, J. and Mulder, F.M. J. of Alloys and Compounds 393 1 (2005).Google Scholar
[41] Wagemans, R.W.P. Lenthe, J.H.v. Jongh, P.E.d. Dillen, A.J.v. and Jong, K.P.d. J. Am. Chem. Soc. 127 16675 (2005).Google Scholar
[42] Lapovok, R. Cottam, R. Thomson, P.F. and Estrin, Y. J. Mater. Research 20 1375 (2005).Google Scholar