Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T06:13:22.117Z Has data issue: false hasContentIssue false

Novel Organic Sol-Gel Materials For Second-Order Nonlinear Optics

Published online by Cambridge University Press:  16 February 2011

R. J. Jeng
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30043, ROC
G. H. Hsiue
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30043, ROC
J. I. Chen
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
S. Marturunkakul
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
L. Li
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
X. L. Jiang
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
C. Masse
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
J. Kumar
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
S. K. Tripathy
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
Get access

Abstract

A new class of organic sol-gel second-order nonlinear optical (NLO) Materials based on hexa (Methoxymethyl) Melamine has been investigated. NLO active chromophores, 4- (4′-nitrophenylazo) aniline and 4-amino-4′-nitrobiphenyl, were incorporated into the Melamine Matrices. Samples exhibit second-order optical nonlinearity after poling and curing at 220 °C for 30 Min. The synthesis, preparation, and characterization of these materials are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ermer, S., Valley, J.F., Lytel, R., Lipscomb, G.F., Van Eck, T.E., and Girton, D.G., Appl. Phys. Lett. 61, 2272 (1992).CrossRefGoogle Scholar
2. Prasad, P.N. and Williams, D.J., Introduction to Nonlinear Optical Effects in molecules and Polymers (John Wiley & Sons, New York, 1991).Google Scholar
3. Stähelin, M., Burland, D.M., Ebert, M., Miller, R.D., Smith, B.A., Twieg, R.J., Volksen, W., and Walsh, C.A., Appl. Phys. Lett. 61, 1626 (1992).CrossRefGoogle Scholar
4. Hubbard, M.A., Marks, T.J., Yang, J., and Wong, G.K., Chem. Mater. 1, 167 (1989).Google Scholar
5. Eich, M., Reck, B., Yoon, D.Y., Willson, C.G., and Bjorklund, G.C., J. Appl. Phys. 66, 3241 (1989).CrossRefGoogle Scholar
6. Jeng, R.J., Chen, Y.M., Kumar, J., and Tripathy, S.K., Macromol, J.. Sci., Pure Appl. Chem. A 29, 1115 (1992).Google Scholar
7. Mandai, B.K., Chen, Y.M., Lee, J.Y., Kumar, J., and Tripathy, S.K., Appl. Phys. Lett. 58, 2459 (1991).CrossRefGoogle Scholar
8. Jeng, R.J., Chen, Y.M., Jain, A.K., Tripathy, S.K., and Kumar, J., Opt. Commun. 89, 212 (1992).CrossRefGoogle Scholar
9. Jeng, R.J., Chen, Y.M., Jain, A.K., Kumar, J., and Tripathy, S.K., Chem. Mater. 4, 972 (1992).Google Scholar
10. Jeng, R.J., Chen, Y.M., Jain, A.K., Kumar, J., and Tripathy, S.K., Chem. Mater. 4, 1141 (1992).Google Scholar
11. Marturunkakul, S., Chen, J.I., Li, L., Jeng, R.J., Kumar, J., and Tripathy, S.K., Chem. Mater. 5, 592 (1993).Google Scholar
12. Xu, C., Wu, B., Todorova, O., Dalton, L.R., Shi, Y., Ranon, P.M., and Steier, W.H., Macromolecules 26, 5303 (1993).CrossRefGoogle Scholar
13. Jeng, R.J., Chen, Y.M., Chen, J.I., Kumar, J., and Tripathy, S.K., Macromolecules 26, 2530 (1993).Google Scholar
14. Eaton, D.F., Science 253, 281 (1991).Google Scholar
15. Brydson, J.A., Plastics Materials, 4th ed. (Butterworths Scientific, London, 1982).Google Scholar
16. Updegraff, I.H., in Encyclopedia of Polymer Science and Engineering (Wiley, New York, 1986), vol. 1, p. 725.Google Scholar
17. Sherwood, D.W. and Calvin, M., J. Am. Chem. Soc. 64, 1350 (1942).CrossRefGoogle Scholar
18. Singer, K.D., Sohn, J.E., and Lalama, S.J., Appl. Phys. Lett. 49, 248 (1986).Google Scholar
19. Pang, K.P. and Gillham, J.K., J. Appl. Polym. Sci. 39, 909 (1990).CrossRefGoogle Scholar
20. Lindsay, G.A., Henry, R.A., Hoover, J.M., Knoesen, A., and Mortazavi, M.A., Macromolecules 25, 4888 (1992).CrossRefGoogle Scholar
21. Singer, K.D., Sohn, J.E., King, L., and Dirk, W., J. Opt. Soc. Am. B 6, 1339 (1989).CrossRefGoogle Scholar
22. Chen, Y.M., Jeng, R.J., Li, L., Zhu, X., Kumar, J., and Tripathy, S.K., Mol. Cryst. Liq. Crsyt. Sci. Technol. - Sec. B: Nonlinear Optics, 4, 71 (1993).Google Scholar