Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:16:52.390Z Has data issue: false hasContentIssue false

Morphological Investigations of Organic/Inorganic Nanocomposites Fabricated to Achieve Controlled Dispersion at High Loadings

Published online by Cambridge University Press:  28 January 2011

Andrew J. Duncan
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069, U.S.A.
Andrew B. Schoch
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069, U.S.A.
Christopher S. Gold
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069, U.S.A.
Joseph L. Lenhart
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069, U.S.A.
Frederick L. Beyer
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069, U.S.A.
Get access

Abstract

Realization of property enhancements inherent to the presence of nanoparticles continues to be a challenge for the production of bulk nanocomposite materials with commercially available techniques. This study combines twin-screw compounding with surface modification of SiO2 nanoparticles to enable targeted dispersion in a SEBS block copolymer. Production of these composites with high levels of well-dispersed particulates aims to leverage aggregation for production of hierarchical structure. The aggregation state of the particles as well as the level of order in the block copolymer morphology was determined through USAXS and TEM. Particles coated with ligands miscible with the end-blocks of the BCP (minority component) increased dispersion at all loading levels observed up to 10 vol%. Ligands employed to increase miscibility of the nanoparticle with the mid-block (majority component) resulted in large aggregates for all loadings without disturbance of the BCP morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shenhar, R., Norsten, T. B., Rotello, V. M., Adv. Mater. 17, 657669 (2005).Google Scholar
2. Kang, H., Detcheverry, F. A., Mangham, A. N., Stoykovich, M. P., Daoulas, K. C., Hamers, R. J., Muller, M., de Pablo, J. J., Nealey, P. F., Phys. Rev. Lett. 100, 4 (2008).Google Scholar
3. Jeon, S. J., Yang, S. M., Kim, B. J., Petrie, J. D., Jang, S. G., Kramer, E. J., Pine, D. J., Yi, G. R., Chem. Mater. 21, 37393741 (2009).Google Scholar
4. Listak, J., Hakem, I. F., Ryu, H. J., Rangou, S., Politakos, N., Misichronis, K., Avgeropoulos, A., Bockstaller, M. R., Macromolecules 42, 57665773 (2009).Google Scholar
5. Akcora, P., Liu, H., Kumar, S. K., Moll, J., Li, Y., Benicewicz, B. C., Schadler, L. S., Acehan, D., Panagiotopoulos, A. Z., Pryamitsyn, V., Ganesan, V., Ilavsky, J., Thiyagarajan, P., Colby, R. H., Douglas, J. F., Nat. Mater. 8, 354359 (2009).Google Scholar
6. Haryono, A., Binder, W. H., Small 2, 600611 (2006).Google Scholar
7. Vaia, R. A., Maguire, J. F., Chem. Mater. 19, 27362751 (2007).Google Scholar
8. Bockstaller, M. R., Lapetnikov, Y., Margel, S., Thomas, E. L., J. Amer. Chem. Soc. 125, 52765277 (2003).Google Scholar
9. Ilavsky, J., Jemian, P. R., Allen, A. J., Zhang, F., Levine, L. E., Long, G. G., J. Appl. Crystallogr. 42, 469479 (2009).Google Scholar
10. Ilavsky, J., Jemian, P. R., J. Appl. Crystallogr. 42, 347353 (2009).Google Scholar
11. Mauritz, K. A., Blackwell, R. I., Beyer, F. L., Polymer 45, 30013016 (2004).Google Scholar
12. Roe, R.-J., Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, New York, 2000.Google Scholar