Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T13:52:13.572Z Has data issue: false hasContentIssue false

Modeling Particle Size Effects on Phase Stability and Transition Pathways in Nanosized Olivine Cathode Particles

Published online by Cambridge University Press:  01 February 2011

Ming Tang
Affiliation:
mingtang@mit.edu, Massachusetts Institute of Technology, Department of Materials Science and Enginnering, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States
Hsiao-Ying Huang
Affiliation:
hshuang@MIT.EDU, Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA, 02139, United States
Nonglak Meethong
Affiliation:
nmpuye@MIT.EDU, Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA, 02139, United States
Yu-Hua Kao
Affiliation:
yhkao@MIT.EDU, Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA, 02139, United States
W. Craig Carter
Affiliation:
ccarter@mit.edu, Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA, 02139, United States
Yet-Ming Chiang
Affiliation:
ychiang@mit.edu, Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA, 02139, United States
Get access

Abstract

Recent experiments show that nanosized olivine LiFePO4 has different phase transition and solubility behavior than that of larger cathode particles. The possibility of metastable or globally stable amorphous phase in nanosized LiFePO4 particles during delithiation is considered in a diffuse-interface model. At a small enough particle size, a lithiated crystalline phase can undergo amorphization upon charging instead of transforming directly to the delithiated crystalline phase at nanoscale particle sizes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chung, S.-Y., Bloking, J. T. and Chiang, Y.-M., Nature Mater. 1, 81 (2002).Google Scholar
2 Meethong, N. Huang, H.-S., Carter, W.C. and Chiang, Y.-M., Electrochem. Solid-State Lett. 10, A134 (2007).Google Scholar
3 Meethong, N. Kao, Y.-H. and Chiang, Y.-M., unpublished.Google Scholar
4 Dash, J. G. Rempel, A. M. and Wettlaufer, J. S. Rev. Mod. Phys. 78, 695 (2006).Google Scholar
5 Luo, J. Chiang, Y.-M. and Cannon, R. M. Langmuir 21, 7358 (2005).Google Scholar
6 Parks, G. A. Rev. Mineralogy 23, 133 (1990).Google Scholar
7 Pitcher, M. W. Ushakov, S. V. Navrotsky, A. Woodfield, B. F. Li, G. Boerio-Goates, J. and Tissue, B. M. J. Am. Ceram. Soc. 88, 160 (2005).Google Scholar
8 Warren, J. A. Kobayashi, R. Lobkovsky, A. and Carter, W. C. Acta Mater. 51, 6035 (2003).Google Scholar
9 Tang, M. Carter, W. C. and Cannon, R. M. Phys. Rev. Lett. 97, 075502 (2006).Google Scholar
10 Meethong, N. Huang, H.-S., Carter, W.C. Chiang, Y.-M., Adv. Func. Mater. 17, 1115 (2007).Google Scholar
11 Srinivasan, V. and Newman, J. J. Electrochem. Soc. 151, A1517 (2004).Google Scholar
12 Robie, R. A. Hemingway, B. S. and Fisher, J. R. in Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures (U.S. Geol. Surv. Bull. 1452, Washington, DC 1979).Google Scholar
13 Dodd, J. L. Yazami, R. and Fultz, B. Electrochem. Solid-State Lett. 9, A151 (2006).Google Scholar
14 Prosini, P. P. Lisi, M. Scaccia, S. Carewska, M. Cardellini, F. and Pasqualib, M. J. Electrochem. Soc. 149, A297 (2002).Google Scholar
15 Masquelier, C. Reale, P. Wurm, C. Morcrette, M. Dupont, L. and Larcher, D. J. Electrochem. Soc. 149, A1037 (2002).Google Scholar
16 Bishop, C. M. Cannon, R. M. and Carter, W. C. Acta Mater. 53, 4755 (2005).Google Scholar