Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T10:07:18.170Z Has data issue: false hasContentIssue false

Memory effect in nanostructured Si-rich hafnia films

Published online by Cambridge University Press:  19 November 2013

L. Khomenkova
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine
X. Portier
Affiliation:
CIMAP, CEA/CNRS/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen cedex 4, France
F. Gourbilleau
Affiliation:
CIMAP, CEA/CNRS/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen cedex 4, France
A.Slaoui
Affiliation:
ICube, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2, France
Get access

Abstract

Microstructral and charge-trap properties of single Hf-silicate dielectric films are presented versus annealing treatment. The as-grown films were found to be homogeneous and amorphous. It is shown that annealing treatment results in the formation of alternated Hf-rich and Si-rich layers. The mechanism responsible for this phenomenon is found to be surface directed spinodal decomposition. The increase of annealing temperature up to 1000-1100°C resulted in the crystallization of Hf-rich phase. The stability of its tetragonal phase caused an enhancement of film permittivity was observed. The evolution of charge trapping properties of the films results in the memory effect which nature was discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
He, G., Zhu, L.Q., Sun, Z.Q., Wan, Q., Zhang, L.D., Progress in Materials Science 56, 475 (2011).CrossRefGoogle Scholar
Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E.F., Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
Lee, C.H., Meeter, J., Narayanan, V., Kan, E.C., J. Electron. Mater. 34, 1 (2005).CrossRefGoogle Scholar
Perego, M., Seguini, G., Wiemer, C., Fanciulli, M., Coulon, P.-E., Bonafos, C., Nanotechnology 21, 055606 (2010).Google Scholar
Khomenkova, L., Sahu, B.S., Slaoui, A., Gourbilleau, F., Nanoscale Research Letters 6, 172 (2011).CrossRefGoogle Scholar
Lu, T.Z., Alexe, M., Scholz, R., Appl. Phys. Lett. 87, 202110 (2005).CrossRefGoogle Scholar
Khomenkova, L., Dufour, C., Coulon, P.-E., Bonafos, C., Gourbilleau, F., Nanotechnology 21, 095704 (2010).Google Scholar
Khomenkova, L., Portier, X., Cardin, J., Gourbilleau, F., Nanotechnology 21, 285707 (2010).CrossRefGoogle Scholar
Lui, J., Wu, X., Lennard, W.N., Landheer, D., Dharma-Wardana, M.W.C., J. Appl. Phys. 107, 123510 (2010).Google Scholar
Lin, C.-H., Keo, Y., J. Appl. Phys. 110, 024101 (2011).CrossRefGoogle Scholar
LV, Sh.-C., Ge, Zh.-Y., Zhou, Y., Xu, B., Gao, L.-G., Yin, J., Xia, Y.-D., Liu, Zh.-G., Chin. Phys. Lett. 27, 068502 (2010).Google Scholar
Fischer, D., Kersch, A., Appl. Phys. Lett. 92, 012908 (2008).CrossRefGoogle Scholar