Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T07:45:53.922Z Has data issue: false hasContentIssue false

Low Temperature MEMS Manufacturing Processes: Plasma Activated Wafer Bonding

Published online by Cambridge University Press:  01 February 2011

Viorel Dragoi
Affiliation:
Paul Lindner EV Group, DI Erich Thallner Str. 1, 4780–Schaerding, Austria
Sharon Farrens
Affiliation:
Paul Lindner EV Group, DI Erich Thallner Str. 1, 4780–Schaerding, Austria
Get access

Abstract

This paper introduces a new technology: low temperature plasma activated wafer bonding. In this process, the wafers are submitted to a plasma treatment prior to bringing them into contact for bonding. The surface activation allows process temperatures ranging from room temperature to maximum 400°C. For Si direct bonding using plasma activation the Si bulk fracture strength is reached after a thermal annealing of 1 hour at 300°C, much lower than the annealing temperature used for the standard process without plasma activation (∼1100°C). Experimental results illustrating the main benefits of the process are presented. The process was successfully applied also for bonding other materials than silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tong, Q.-Y. and Gösele, U., Semiconductor Wafer Bonding: Science and Technology (Wiley, New York), 1998.Google Scholar
2 Amirfeiz, P., Bengtsson, S., Bergh, M., Zanghellini, F. and Börjesson, L., J. of Electrochem. Soc. 147(7), pp. 26932698 (2000).Google Scholar
3 Wiegand, M., Reiche, M., Gösele, U., J. of Electrochem. Soc. 147 (7), pp. 27342740, 2000.Google Scholar
4 Suni, T., Henttinen, K., Suni, I., and Mäkinen, J., J. of the Electrochem. Soc. 149 (6), pp. G348–G351 (2002).Google Scholar
5 Wolffenbuttel, R. F., Sensors & Actuators A62, pp. 680686 (1997).Google Scholar
6 Dragoi, V., Lindner, P., Tischler, M., Schaefer, C., Mat. Science in Semicond. Proc. 5, pp. 425428 (2002).Google Scholar
7 Dragoi, V., Lindner, P., Glinsner, T., Wimplinger, M. and Farrens, S., (Mater. Res. Soc. Proc. 782, Boston, 2004) pp. A5.80–A5.80.6.Google Scholar
8 Dragoi, V., Glinsner, T., Mittendorfer, G., Wieder, B., Lindner, P., (SPIE Conf. Proc. 5116, Gran Canaria, Spain, 2003), pp.160165.Google Scholar
9 Maszara, W. P., Goetz, G., Caviglia, A. and McKitterick, J. B., J. of Appl. Phys. 64(10), pp. 49434950 (1988).Google Scholar