Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T18:54:11.194Z Has data issue: false hasContentIssue false

Hydrogen Diffusion in Zinc Oxide Thin Films

Published online by Cambridge University Press:  31 January 2011

Wolfhard Beyer
Affiliation:
w.beyer@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5-Photovoltaik, Jülich, Germany
Uwe Breuer
Affiliation:
uwe.breuer@fz-juelich.de, Forschungszentrum Jülich GmbH, Zentralabteilung für Chemische Analysen, Jülich, Germany
Frank Hamelmann
Affiliation:
FHamelmann@malibu-solar.de, Malibu GmbH & Co.KG, Jülich, Germany
Jürgen Hüpkes
Affiliation:
j.huepkes@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5-Photovoltaik, Jülich, Germany
Andrea Stärk
Affiliation:
a.staerk@fz-juelich.de, Forschungszentrum Jülich GmbH, Zentralabteilung für Chemische Analysen, Jülich, Germany
Helmut Stiebig
Affiliation:
HStiebig@malibu-solar.de, Malibu GmbH & Co.KG, Jülich, Germany
Uwe Zastrow
Affiliation:
u.zastrow@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5-Photovoltaik, Jülich, Germany
Get access

Abstract

Hydrogen diffusion in zinc oxide thin films was studied by secondary ion mass spectrometry (SIMS) measurements, investigating the spreading of implanted deuterium profiles by annealing. By effusion measurements of implanted rare gases He and Ne the microstructure of the material was characterized. While for material prepared by low pressure chemical vapour deposition an interconnected void structure and a predominant diffusion of molecular hydrogen was found, sputter-deposited ZnO films showed a more compact structure and long range diffusion of atomic hydrogen. Hydrogen diffusion energies of 1.8 – 2 eV, i.e. higher than reported in literature were found. The results are discussed in terms of a H diffusion model analogous to the model applied for hydrogen diffusion in hydrogenated amorphous and microcrystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Van de Walle, C.G., Phys. Rev. Lett. 85, 86(2000).Google Scholar
2. Mollwo, E. Z. Phys. 138, 478(1954).Google Scholar
3. Thomas, D.G. Lander, J.J. J. Chem. Phys. 25, 1136(1956).Google Scholar
4. Nickel, N.H. Phys. Rev. B 73, 195204(2006).Google Scholar
5. Beyer, W. Phys. Status Solidi C 1, 1144(2004).Google Scholar
6. Beyer, W. in: Semiconductors and Semimetals, Vol.61, edited by Nickel, N.H. (Academic Press, San Diego, 1999) p. 165.Google Scholar
7. Beyer, W. Hüpkes, J., Stiebig, H. Thin Solid Films 516, 147(2007).Google Scholar
8. Anderson, O.L. Stuart, D.A. J. Am. Ceram. Soc. 37, 573(1954).Google Scholar
9. Eucken, A. Hellwege, H. (Eds.) Landoldt-Börnstein, Atomund Molekularphysik I (Springer Verlag, Berlin, Germany, 1950) p. 32510.Google Scholar
10. Ip, K. Overberg, M.E. Heo, Y.W. Norton, D.P. Pearton, S.J. Kucheyev, S.O. Jagadish, C. Williams, J.S. Wilson, R.G. Zavada, J.M. Appl. Phys. Lett. 81, 3996(2002)Google Scholar
11. Wardle, M.G. Gross, J.P. Briddon, P.R. Phys. Rev. Lett. 96, 205504(2006).Google Scholar
12. Ip, K. Overberg, M.E. Heo, Y.W. Norton, D.P. Pearton, S.J. Stutz, C.E. Luo, B. Ren, F. Look, D.C. Zavada, J.M. Appl. Phys. Lett. 82, 385(2003).Google Scholar
13. Beyer, W. Solar Energy Mat. & Solar Cells 78, 235(2003).Google Scholar
14. Kunat, M. Girol, S.G. Becker, T. Burghaus, U. Wöll, C., Phys. Rev. B 66, 081402(R) (2002).Google Scholar
15. Kerr, J.A. Trotman-Dickenson, A.F., in: CRC Handbook of Chemistry and Physics, 58th Edition (CRC Press, West Palm Beach, Fl. 1978) F219.Google Scholar