Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T10:56:00.670Z Has data issue: false hasContentIssue false

High-mobility Nanocrystalline Indium Oxide TFTs with Silicon Nitride Gate Dielectric

Published online by Cambridge University Press:  01 February 2011

Kai Wang
Affiliation:
k2wang@uwaterloo.ca, University of Waterloo, Electrical and Computer Engineering, 200 University Ave. West, Waterloo, N2L 2G1, Canada, 1-519-8884567 ext.33804
Yuriy Vygranenko
Affiliation:
yuriy@venus.uwaterloo.ca, ISEL, Department of Electronics Telecommunications and Computer, Lisbon, P-1949-014, Portugal
Arokia Nathan
Affiliation:
anathan@ucl.ac.uk, University College London, London Centre for Nanotechnology, London, WC1H 0AH, United Kingdom
Get access

Abstract

A variety of oxide semiconductors such as ZnO, SnO2, In2O3 and other multi-component oxide compounds have been successfully used as channel materials in thin-film transistors (TFTs). Compared with amorphous silicon and organic semiconductor counterparts, the unique features of these materials include good performance, stability, low temperature processing, and transparency. In this work, we report on room-temperature deposition of indium oxide thin films by reactive ion beam assisted evaporation (IBAE) and their application to TFTs. By modifying the deposition parameters, nanocrystalline indium oxide (nc-In2O3) with an average grain size of 12 nm was achieved. TFTs with IBAE nc-In2O3 channel and silicon nitride gate dielectric deposited by conventional plasma-enhanced chemical vapour deposition (PECVD), were fabricated. The n-channel TFT has a threshold voltage of ∼2.5 V, a field-effect mobility of ∼32 cm2/Vs, along with an ON/OFF current ratio of ∼108, and a sub-threshold slope of 2.5 V/decade. The TFT reported here has one of the best performance characteristics in terms of device mobility, ON/OFF current ratio, and OFF current, using conventional, and large area foundry-compatible PECVD gate dielectrics. The device performance coupled with its low-temperature processing makes IBAE-derived nc-In2O3 TFT a promising candidate for active matrix flat panel displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoffman, R. L. Norris, B. J. and Wager, J. F. Appl. Phys. Lett. 82, 733 (2003).Google Scholar
2. Carcia, P. F. McLean, R. S. Reilly, M. H. and Nunes, G. Jr., Appl. Phys. Lett. 82, 1117 (2003).Google Scholar
3. Masuda, Satoshi, Kitamura, Ken, Okumura, Yoshihiro, Miyatake, Shigehiro, Tabata, Hitoshi and Kawai, Tomoji, J. Appl. Phys. 93, 1624 (2003).Google Scholar
4.Elvira Fortunato, M. C. Pedro Barquinha, M. C. Pimentel, Ana C. M. B. G. Goncalves, Alexandra M. F. Marques, Antonio J. S. Pereira, Luis M. N. and Martins, Rodrigo F. P. Adv. Mater. 17, 590 (2005).Google Scholar
5. Carcia, P. F. McLean, R. S. and Reilly, M. H. Appl. Phys. Lett. 88, 123509 (2006).Google Scholar
6. Presley, R. E. Munsee, C. L. Park, C.-H, Hong, D. Wager, J. F. and Keszler, D. A. J. Phys. D 37, 2810 (2004).Google Scholar
7. Lavareda, G. Nunes de Carvalho, C., Fortunato, E. Ramos, A. R. Alves, E. Conde, O. and Amaral, A. J. Non Cryst. Solids 352, 2311 (2006).Google Scholar
8. Wang, L. Yoon, M. H. Lu, G. Yang, Y. Facchetti, A. and Marks, T. J. Nature Materials 5, 893 (2007).Google Scholar
9. Vygranenko, Yuriy, Wang, Kai and Nathan, Arokia, Appl. Phys. Lett. 91, 263508 (2007).Google Scholar
10. Chiang, H. Q. Wager, J. F. Hoffman, R. L. Jeong, J. and Keszler, D. A. Appl. Phys. Lett. 86, 013503 (2005).Google Scholar
11. Jackson, W. B. Herman, G. S. Hoffman, R. L. Taussig, C. Braymen, S. Jeffery, F. and Hauschildt, J., J. Non Cryst. Solids 352, 1753 (2006).Google Scholar
12. Yaglioglu, B. Yeom, H. Y. Beresford, R. and Paine, D. C. Appl. Phys. Lett. 89, 062103 (2006).Google Scholar
13. Grover, M. S. Hersh, P. A. Chiang, H. Q. Kettenring, E. S. Wager, J. F. and Keszler, D. A., J. Phys. D 40, 1335 (2007).Google Scholar
14. Nomura, Kenji, Ohta, Hiromichi, Takagi, Akihiro, Kamiya, Toshio, Hirano, Masahiro and Hosono, Hideo, Nature 432, 488 (2004).Google Scholar
15. Yabuta, Hisato, Sano, Masafumi, Abe, Katsumi, Aiba, Toshiaki, Den, Tohru, Kumomi, Hideya, Nomura, Kenji, Kamiya, Toshio and Hosono, Hideo, Appl. Phys. Lett. 89, 112123 (2006).Google Scholar
16. Suresh, Arun, Wellenius, Patrick, Dhawan, Anuj and Muth, John, Appl. Phys. Lett. 90, 123512 (2007).Google Scholar
17. Kim, Minkyu, Jeong, Jong Han, Lee, Hun Jung, Ahn, Tae Kyung, Shin, Hyun Soo, Park, Jin-Seong, Jeong, Jae Kyeong, Mo, Yeon-Gon and Kim, Hye Dong, Appl. Phys. Lett. 90, 212114 (2007).Google Scholar
18. Ofuji, M. Abe, K. Shimizu, H. Kaji, N. Hayashi, R. Sano, M. Kumomi, H. Nomura, K. Kamiya, T., and Hosono, H. IEEE Electron Device Lett. 28, 273 (2007).Google Scholar
19. Carcia, P. F. McLean, R. S. Malajovich, I. and Reilly, M. H. Thin Film Transistors Technologies VII-Proceedings of the International Symposium, 178 (2005).Google Scholar
20. Carcia, P. F. McLean, R. S. and Reilly, M. H. Appl. Phys. Lett. 88, 123509 (2006).Google Scholar
21. Presley, R. E. Hong, D. Chiang, H. Q. Hung, C. M. Hoffman, R. L. and Wager, J. F. Solid-State Electronics 50, 500 (2006).Google Scholar
22. Carcia, P. F. McLean, R. S. Reilly, M. H. Crawford, M. K. Blanchard, E. N. Kattamis, A. Z. and Wagner, S. J. Appl. Phys. 102, 074512 (2007).Google Scholar
23. Wang, Kai, Vygranenko, Yuriy and Nathan, Arokia, Mater. Res. Soc. Symp. Proc. 1012, Y0302 (2007).Google Scholar
24. Pierret, Robert F. Semiconductor device fundamentals, (Addison-Wesley, Reading, Mass., 1996), p. 792.Google Scholar
25. Greve, David W. Field effect devices and applications : devices for portable, low-power, and imaging systems, (Prentice Hall, Upper Saddle River, NJ, 1998), p. 379.Google Scholar