Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T00:58:38.709Z Has data issue: false hasContentIssue false

Highly efficient Synthesis of per-substituted amino-cyclodextrins under Microwave Irradiation in a closed Cavity

Published online by Cambridge University Press:  18 February 2013

Giancarlo Cravotto*
Affiliation:
Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy.
Katia Martina
Affiliation:
Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy.
Marina Caporaso
Affiliation:
Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy.
Georgios Heropoulos
Affiliation:
Institute of Organic and Pharmaceutical Chemistry, The National Hellenic Research Foundation, 11635 Athens, Greece.
László Jicsinszky
Affiliation:
Cyclolab R&D Laboratory, Illatos út 7, H-1097 Budapest, Hungary.
*
*Author for correspondence: E-mail: giancarlo.cravotto@unito.it; FAX +39.011.6707687
Get access

Abstract

Synthetic chemists are paying ever more attention to enabling technologies as a means to opening the paths towards the double goal of achieving high efficiency and meeting green criteria. Non-conventional techniques that create unique environments which promote selective modification have been investigated by many as part of the search for more highly efficient synthetic derivatization of cyclodextrins (CD). A few optimized microwave-assisted protocols have so far been developed for the preparation of selective per-alkylated aminocyclodextrin. In this work, a series of β-CD derivatives, whose primary hydroxyls were all replaced by amino groups, has efficiently been synthesized from per-(6-iodo-6-deoxy)-β-CD via nucleophilic substitution with amines under microwave irradiation in closed vessel (N2 pressure). The reduction of per-(6-azido-6-deoxy)-β-CD to per-(6-amino-6-deoxy)-β-CD via catalytic hydrogenation has also been successfully carried out under dielectric heating.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

a) Morschhäuser, R.; Krull, M.; Kayser, C.; Boberski, C.; Bierbaum, R.; Püschner, P.A.; Glasnov, T.N.; Kappe, C.O. Green Process Synth. 2012, 1, 281285. b) Roberts, B.A.; Strauss C.R. Acc. Chem. Res. 2005, 38, 653–661.Google Scholar
a) Mehtaa, V. P.; Van der Eycken, E. V. Chem. Soc. Rev., 2011, 40, 49254936.b) Kappe, C. O.; Van der Eycken, E. Chem. Soc. Rev., 2010, 39, 1280–1290.CrossRefGoogle Scholar
de la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc. Rev., 2005, 34, 164178.CrossRefGoogle Scholar
a) Martina, K.; Caporaso, M.; Tagliapietra, S.; Heropoulos, G.; Rosati, O.; Cravotto, G. Carbohydr. Res. 2011, 346 (1 26772682; b) Boffa, L.; Calcio Gaudino, E.; Martina, K.; Jicsinszky, L.; Cravotto G. New J. Chemistry 2010, 34, 2013-2019 c) Cintas, P; Barge, A; Tagliapietra, S; Boffa, L; Cravotto, G. Nature Protocols 2010, 5, 607–616.CrossRefGoogle Scholar
a) Szejtli, J.; Cyclodextrin and their inclusion complexes Academiai Kiado, Budapest, 1982; b) Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1875–1917.Google Scholar
Madhavan, N.; Robert, E. C.; Gin, M. S. Angew. Chem. Int. Ed. 2005, 44, 75847587.CrossRefGoogle Scholar
Kim, H.-Y.; Sohn, J.; Wijewickrama, G. T.; Edirisinghe, P.; Gherezghiher, T.; Hemachandra, M.; Lu, P.-Y.; Chandrasena, R. E.; Molloy, M. E.; Tonetti, D. A.; Thatcher, G. R. J. Bioorg. Med. Chem. 2010, 18, 809821.CrossRefGoogle Scholar
Zhao, Y.-L.; Li, Z.; Kabehie, S.; Botros, Y. Y.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2010, 132, 1301613025.CrossRefGoogle Scholar
Diaz-Moscoso, A.; Mendez-Ardoy, A.; Ortega-Caballero, F.; Benito, J. M.; Ortiz Mellet, C.; Defaye, J.; Robinson, T. M.; Yohannes, A.; Karginov, V. A.; Garcia Fernandez, J. M. Chem Med Chem 2011, 6, 181192.CrossRefGoogle Scholar
a) Xu, C.; Wang, J., Wan, L.; Lin, J.; Wang, X. J. Mater. Chem. 2011, 21, 1046310471; b) Franc, G.; Kakkar, A.; Chem. Commun. 2008, 5267–5276;c) Puglisi, A.; Spencer, J.; Clarke, J.; Milton, J. J. Incl. Phenom. Macrocyclic. Chem. 2012, 73, 475–478.CrossRefGoogle Scholar
Boger, J.; Corcoran, J.; Lehn, J.-M. Helv. Chim. Acta 1978, 61, 21902218.CrossRefGoogle Scholar
a) Gadelle, A.; Defaye, J. Angew. Chem. Int. Ed. 1991, 30,7880; b) Ashton, P. R.; Koniger, R.; Stoddart, J. F. J. Org. Chem. 1996, 61, 903–908.CrossRefGoogle Scholar
a) Tagaki, W.; Yano, K.; Yamanaka, K.; Yamamoto, H.; Miyasaki, T. Tetrahedron Lett. 1990, 27, 38973900; b) Matsui, Y.; Tanemura, E.; Nonomura, T. Bull. Chem. Soc. Jpn 1993, 66, 2827.CrossRefGoogle Scholar
Guillo, F.; Hamelin, B.; Jullien, L.; Canceill, J.; Lehn, J. M.; De Robertis, L.; Driguez, H. Bull. Soc. Chim. Fr. 1995, 132, 857866.Google Scholar
Wang, Z.; Chang, L.; Klein, W. L.; Thatcher, G. R. J.; Venton, D. L. J. Med. Chem. 2004, 47, 33293333.CrossRefGoogle Scholar