Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T22:08:36.670Z Has data issue: false hasContentIssue false

Growth of Cu-Rich/Poor CuInS2 thin films by the sequential modulated flux deposition technique

Published online by Cambridge University Press:  31 January 2011

Alberto Bollero
Affiliation:
alberto.bollero@ciemat.es, CIEMAT, Energy, Av. Complutense 22, Madrid, 28040, Spain, +34-91346 6364, +34-91346 6037
Maarja Grossberg
Affiliation:
mgross@staff.ttu.ee, Tallinn University of Technology (TUT), Materials Science, Tallinn, Estonia
Taavi Raadik
Affiliation:
traadik@staff.ttu.ee, Tallinn University of Technology (TUT), Materials Science, Tallinn, Estonia
Juan Francisco Trigo
Affiliation:
juanfrancisco.trigo@ciemat.es, CIEMAT, Energy, Madrid, Spain
José Herrero
Affiliation:
jose.herrero@ciemat.es, CIEMAT, Energy, Madrid, Spain
M. Teresa Gutiérrez
Affiliation:
teresa.gutierrez@ciemat.es, CIEMAT, Energy, Madrid, Spain
Get access

Abstract

CuInS2 has emerged during recent years as a good candidate to substitute CuInSe2 as polycrystalline absorber in thin film solar cells, mainly due to its direct band gap energy of 1.5 eV. In this study, absorber layers of both Cu-rich and Cu-poor types have been grown on soda-lime glass substrates by proper selection of the deposition parameters. The morphology and the optical properties of the resulting CuInS2 films were studied in dependence of the deposition order of the elemental constituents: alternate evaporation of the precursors, simultaneous deposition of the three constituents and sequential modulation of the evaporation fluxes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klenk, R. Klaer, J. Scheer, R. Lux-Steiner, M. Ch., Luck, I. Meyer, N. and Rühle, U., Thin Solid Films 480, 509(2005).Google Scholar
2. Kaigawa, R. Wada, T. Bakehe, S. and Klenk, R. Thin Solid Films 511, 430(2006).Google Scholar
3. Bollero, A. Trigo, J. F. Herrero, J. and Gutiérrez, M. T., Thin Solid Films 517, 2167(2009).Google Scholar
4. Klenk, R. Blieske, U. Dieterle, V. Ellmer, K. Fiechter, S. Hengel, I. Jäger-Waldau, A., Kampschulte, T. Kaufmann, Ch. Klaer, J. Lux-Steiner, M.Ch., Braunger, D. Hariskos, D. Ruckh, M. and Schock, H.W. Sol. Energy Mater. Sol. Cells 49, 349(1997).Google Scholar
5. Scheer, R. and Lewerenz, H. J. J. Vac. Sci. Technol. A 12(1), 51 (1994).Google Scholar
6. Bollero, A. Grossberg, M. Asenjo, B. and Gutiérrez, M. T., (submitted for publication).Google Scholar
7. Alvarez-Garcìa, J., Pérez-Rodrìguez, A., Barcones, B. Romano-Rodrìguez, A., and Morante, J. R., Appl. Phys. Lett. 80, 562(2002).Google Scholar
8. Morell, G. Katiyar, R. S. Weisz, S. Z. Walter, T. Schock, H. W. and Balberg, I. Appl. Phys. Lett. 69, 987(1996).Google Scholar