Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:15:09.103Z Has data issue: false hasContentIssue false

Fabrication and electrical properties of 0.7BiFeO3-0.3PbTiO3 films on stainless steel by the sol-gel method

Published online by Cambridge University Press:  17 April 2012

Chen Zhao
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Dan Jiang
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Shundong Bu
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Jinrong Cheng
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Get access

Abstract

Ferroelectric 0.7BiFeO3-0.3PbTiO3 (BFO-PT) films were deposited on stainless steel substrates by the sol-gel method. A thin layer of PbTiO3 (PT) was introduced between the substrates and BFO-PT films in order to decrease the annealing temperature of BFO-PT films. X-ray diffraction analysis reveals that BFO-PT films could be well crystallized into the perovskite structure at about 575 oC. Scanning electron microscope (SEM) images show that BFO-PT thin films have grain size of about 50∼60 nm. Our results indicated BFO-PT films deposited on stainless steel substrates maintained the excellent ferroelectric properties with remnant polarization of about 40∼50 μC/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sai Sunder, V.V.S.S., Halliyal, A., Umarji, A.M., J. Mater. Res., 10, 1301 (1995).Google Scholar
[2] Cheng, J.R., Cross, L.E., Mat. Res. Soc. Proc., 2004. 784, C8.16.1 (2004).Google Scholar
[3] Zhou, X.W., Yu, S.W., Yuan, B.R., Yang, W.F., and Cheng, J.R., IEEE Int. Symp. Appl. Ferroelectric., 2009. Proceedings of the the 2009 18th IEEE International Symposium on Application of Ferroelectrics, 194197 (2009).Google Scholar
[4] Bouregba, R., Poullain, G., Vilquin, B., Murray, H., Materials Research Bulletin., 35, 1381 (2000).Google Scholar
[5] Okada, M., Tominaga, K., Araki, T., Katayama, S., and Sakashita, Y., Jpn. J. Appl. Phys., 29, 718 (1990).Google Scholar
[6] You, D.J., Jung, W.W., Choi, S.K., and Cho, Yasuo, Appl. Phys. Lett., 84, 3346 (2004).Google Scholar
[7] Hea, Z.L., Wang, Y.G. and Bia, K., Solid State Communications., 150, 1837 (2010).Google Scholar
[8] Seveno, R., Limousin, P., Averty, D., Chartier, J.-L, Bihan, R le, Gundel, H.W., J. Euro. Ceram. Soc., 20(12), 2025 (2000).Google Scholar
[9] Cheng, J.R., Zhu, W.Y., Li, N. and Cross, L.E., J. Appl. Phys. Lett., 81, 25 (2002).Google Scholar
[10] Wang, G.S., Rémiens, D., Dogheche, E., and Herdier, R., J.Am.Ceram.soc., 89(11), 3417 (2006).Google Scholar
[11] Yuan, B.R., Yu, S.W., Yang, W.F., Zhou, X.W., and Cheng, J.R., IEEE Int. Symp. Appl. Ferroelectric., 2009. Proceedings of the the 2009 18th IEEE International Symposium on Application of Ferroelectrics, 314 (2009).Google Scholar
[12] Zhao, Q.L., Cao, M.S., Yuan, J., Lu, R., Wang, D.W., Zhang, D.Q., Materials Letters., 64, 632635 (2010).Google Scholar
[13] Nagarajan, V., Jenkins, IG, Alpay, SP, Li, H., Aggarwal, S., Salamanca-Riba, L., Roytburd, A.L. and Ramesh, R., J. Appl. Phys., 86, 595 (1999).Google Scholar