Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:18:34.305Z Has data issue: false hasContentIssue false

Exposure Light Wavelength Effects on Charge Trapping and Detrapping of nc-MoOx Embedded ZrHfO High-k Stack

Published online by Cambridge University Press:  28 June 2013

Xi Liu
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Department of Artie McFerrin Chemical Engineering, Texas A&M University, College Station, TX 77843-3122 Deptartment of Industrial and Systems Engineering, Ohio University, Athens, OH 45701
Yue Kuo
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Department of Artie McFerrin Chemical Engineering, Texas A&M University, College Station, TX 77843-3122
Tao Yuan
Affiliation:
Deptartment of Industrial and Systems Engineering, Ohio University, Athens, OH 45701
Get access

Abstract

The influence of the red and green LED light exposure on the memory function of the nanocrystalline MoOx embedded ZrHfO high-k gate dielectric has been investigated. Since the performance of the device is mainly dependent on the hole trapping and detrapping mechanisms, the light exposure affects the hole generation, transfer, and storage to and in the dielectric structure. Both the charge storage capacity and the leakage current were increased from the light exposure. The Coulomb blockade phenomenon in the leakage current density vs. gate voltage curve disappears under the light exposure condition. The light exposure effect is potentially important for practical application of the device.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Cabbe, E. F. and Chan, K., Appl. Phys. Lett., vol. 68, p. 1377, 1996.CrossRefGoogle Scholar
Li, C., Fan, W., Lei, B., Zhang, D., Han, S., Tang, T., Liu, X., Liu, Z., Asano, S., Meyyappan, M., Han, J., and Zhou, C., Appl. Phys. Lett., vol. 84, p. 1949, 2004.CrossRefGoogle Scholar
Blauwe, J. D., IEEE Trans. Nanotechnology vol. 1, no. 1, p.72, 2002.CrossRefGoogle Scholar
Lu, J., Kuo, Y., Yan, J., and Lin, C. H., Jpn J. Appl. Phys., vol. 45 p. L901, 2006.CrossRefGoogle Scholar
Kuo, Y., Lu, J., Chatterjee, S., Yan, J., Kim, H. C., Yuan, T., Luo, W., Peterson, J., and Gardner, M., ECS Trans. vol. 1, no. 5, p. 447, 2006.CrossRefGoogle Scholar
Lee, J. J., Wang, X., Bai, W., Lu, N., and Kwong, D., IEEE Trans. Electron Devices, vol. 50, p. 2067, 2003.Google Scholar
Kuo, Y., ECS Trans., vol. 3, no.3, p. 253, 2006.CrossRefGoogle Scholar
Lu, J. and Kuo, Y., Appl. Phys. Lett., vol. 87, p. 232906, 2005.CrossRefGoogle Scholar
Triyoso, D. H., ECS Trans., vol. 3, no. 3, p. 463, 2006.CrossRefGoogle Scholar
Kuo, Y., ECS Trans., vol. 2, no. 1, p. 13, 2006.Google Scholar
Lu, J., Lin, C. H., and Kuo, Y., JES, vol. 155, no. 6, p. H386, 2008.Google Scholar
Lin, C. H., and Kuo, Y., Mater. Res. Soc. Symp. Proc., vol. 1250, p. 1250-G01-08, 2010.Google Scholar
Lin, C. H., and Kuo, Y., Electrochem. Solid-State Lett., vol. 13, no. 3, p. H83, 2010.CrossRefGoogle Scholar
Yang, C. H., Kuo, Y., Lin, C. H., and Kuo, W., Electrochem. Solid-State Lett., vol. 14, no. 1, p. H50, 2011.CrossRefGoogle Scholar
Kuo, Y., ECS Trans., vol. 35, no.3, p. 13, 2011.CrossRefGoogle Scholar
Lin, C. H. and Kuo, Y., ECS Trans., vol. 35, no. 2, p. 249, 2011.CrossRefGoogle Scholar
Liu, X., Yang, C. H., Kuo, Y., and Yuan, T., Electrochem. Solid-State Lett., vol. 15, no. 6, p. H192, 2012.CrossRefGoogle Scholar
Luo, B. Q., Lin, C. H., and Kuo, Y., ECS Trans., vol. 41, no. 3, p. 93, 2011.CrossRefGoogle Scholar
Kuo, Y., Liu, X., Yang, C. H., Lin, C. C., Mater. Res. Soc. Symp. Proc., vol. 1430, p. 21, 2012.CrossRefGoogle Scholar
Shigesato, Y., Takaki, S., and Haranoh, T., J. Appl. Phys., vol. 71, p. 3356, 1992.CrossRefGoogle Scholar
Kim, H., Gilmore, C. M., Piqué, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B., J. Appl. Phys., vol. 86, no. 11, p. 6451, 1999.CrossRefGoogle Scholar
Birge, A. and Kuo, Y., JES, vol. 159, no. 6, p. H595, 2012.Google Scholar
Hauser, J. and Ahmed, K., Characterizaion and Metrology for ULSI Technology, p. 235, AIP, New York, 1998.Google Scholar
Lu, J., Lin, C. H., and Kuo, Y., ECS Trans., vol. 11, no. 4, p. 509, 2007.CrossRefGoogle Scholar
Rao, K. S., Madhuri, K. V., Uthanna, S., Hussain, O. M., and Julien, C., Mater. Sci. Eng. vol. B100, p. 79, 2003.CrossRefGoogle Scholar
Sivakumar, R., Gopalakrishnan, R., Jayachandran, M., and Sanjeeviraja, C., Curr. Appl. Phys., vol. 7, p. 51, 2007.CrossRefGoogle Scholar
He, T., Yao, J. N., J. Photochem. Photobiol. C, vol. 4, p. 125, 2003.CrossRefGoogle Scholar
Chiam, S. Y., Dasgupta, B., Soler, D., Leung, M. Y., Liu, H., Ooi, Z. E., Wong, L. M., Jiang, C. Y., Chang, K. L., and Zhang, J., Sol. Energy. Mater. Sol. Cells. vol. 99, p. 197, 2012.CrossRefGoogle Scholar
Liu, X., Yang, C. H., Kuo, Y., and Yuan, T., ECS Trans., vol. 45, no. 6, p. 203, 2012.CrossRefGoogle Scholar