Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T15:06:49.859Z Has data issue: false hasContentIssue false

Enhancing the Biological Stability and Functionalities of Quantum Dots via Compact Multifunctional Ligands

Published online by Cambridge University Press:  01 February 2011

Kimihiro Susumu
Affiliation:
susumu@ccs.nrl.navy.mil, U.S. Naval Research Laboratory, Division of Optical Sciences, 4555 Overlook Avenue, SW, Washington, DC, 20375, United States
Thomas Pons
Affiliation:
thomas.pons@gmail.com, U.S. Naval Research Laboratory, Division of Optical Sciences, 4555 Overlook Avenue, SW, Washington, DC, 20375, United States
Igor L. Medintz
Affiliation:
igor.medintz@nrl.navy.mil, U.S. Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Avenue, SW, Washington, DC, 20375, United States
Hedi Mattoussi
Affiliation:
hedi.mattoussi@nrl.navy.mil, US Naval Research Laboratory, Optical Sciences Division, Code 5611, 4555 Overlook Avenue, SW, Washington, DC, 20375, United States, 202-767-9473, 202-404-8114
Get access

Abstract

Format

This is a copy of the slides presented at the meeting but not formally written up for the volume.

Abstract

We have designed and synthesized a series of modular ligands based on poly(ethylene glycol) (PEG) coupled with functional terminal groups to promote biocompatibility of water-soluble quantum dots (QDs). Each hydrophilic ligand is comprised of three modules: a PEG single chain to promote hydrophilicity, dihydrolipoic acid (DHLA) unit connected to one end of the PEG chain for strong anchoring on the QD surface, and potential biological functional groups (biotin, amino, and carboxyl groups) at the other end of the PEG. Water-soluble QDs capped with one type or mixtures of the functional ligands were prepared via cap exchange with the native hydrophobic caps. Homogeneous QD solutions that are stable over extended periods of time and over broad pH range were prepared. Surface binding assay showed that DHLA-PEG-biotin-functionalized QDs strongly interacted with NeutrAvidin-modified surfaces. The new functional surface ligands studied here provide not only stable and highly water-soluble QDs but also simple and easy access to various biological entities.

Type
Slide Presentations
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Medintz, I. L., Uyeda, H. T., Goldman, E. R., and Mattoussi, H., Nat. Mater. 4, 435446 (2005).10.1038/nmat1390Google Scholar
2. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P., Science 281, 20132016 (1998).10.1126/science.281.5385.2013Google Scholar
3. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K., and Nie, S., Nat. Biotechnol. 22, 969976 (2004).10.1038/nbt994Google Scholar
4. Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., and Libchaber, A., Science 298, 17591762 (2002).10.1126/science.1077194Google Scholar
5. Chan, W. C. W. and Nie, S., Science 281, 20162018 (1998).10.1126/science.281.5385.2016Google Scholar
6. Mattoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V., and Bawendi, M. G., J. Am. Chem. Soc. 122, 1214212150 (2000).10.1021/ja002535yGoogle Scholar
7. Wang, Y. A., Li, J. J., Chen, H., and Peng, X., J. Am. Chem. Soc. 124, 22932298 (2002).10.1021/ja016711uGoogle Scholar
8. Clapp, A. R., Medintz, I. L., and Mattoussi, H., ChemPhysChem 7, 4757 (2006).10.1002/cphc.200500217Google Scholar
9. Uyeda, H. T., Medintz, I. L., Jaiswal, J. K., Simon, S. M., and Mattoussi, H., J. Am. Chem. Soc. 127, 38703878 (2005).10.1021/ja044031wGoogle Scholar
10. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 87068715 (1993).10.1021/ja00072a025Google Scholar
11. Hines, M. A. and Guyot-Sionnest, P., J. Phys. Chem. 100, 468471 (1996).10.1021/jp9530562Google Scholar
12. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., and Bawendi, M. G., J. Phys. Chem. B 101, 94639475 (1997).10.1021/jp971091yGoogle Scholar
13. Peng, Z. A. and Peng, X., J. Am. Chem. Soc. 123, 183184 (2001).10.1021/ja003633mGoogle Scholar
14. Pinaud, F., King, D., Moore, H.-P., and Weiss, S., J. Am. Chem. Soc. 126, 61156123 (2004).10.1021/ja031691cGoogle Scholar