Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T12:52:18.875Z Has data issue: false hasContentIssue false

Emission variation in CdSe/ZnS quantum dots conjugated to Papilloma virus antibodies

Published online by Cambridge University Press:  19 November 2013

Juan A. Jaramillo Gómez
Affiliation:
UPIITA – Instituto Politécnico Nacional, México D. F. 07340, México
Tetyana V. Torchynska
Affiliation:
ESFM – Instituto Politécnico Nacional, México D. F. 07738, México
Jose L. Casas Espinola
Affiliation:
ESFM – Instituto Politécnico Nacional, México D. F. 07738, México
Janna Douda
Affiliation:
UPIITA – Instituto Politécnico Nacional, México D. F. 07340, México
Get access

Abstract

The paper presents a comparative study of the photoluminescence (PL) and Raman scattering spectra of core-shell CdSe/ZnS quantum dots (QDs) in nonconjugated states and after the conjugation to the anti-human papilloma virus (HPV), HPV 16-E7, antibodies. All optical measurements are performed on the dried droplets of the original solution of nonconjugated and bioconjugated QDs located on the Si substrate. CdSe/ZnS QDs with emission at 655 nm have been used. PL spectra of nonconjugated QDs are characterized by one Gaussian shape PL band related to the exciton emission in the CdSe core. PL spectra of bioconjugated QDs have changed essentially: the core PL band shifts into the high energy spectral range (“blue” sift) and becomes asymmetric. A set of physical reasons has been proposed for the “blue” shift explanation of the core PL band in bioconjugated QDs. The variation of PL spectra versus excitation light intensities has been studied to analyses the exciton emission via excited states in QDs. Finally the PL spectrum transformation for the core emission in bioconjugated QDs has been attributed to the electronic quantum confined effects stimulated by the electric charges of bioconjugated antibodies.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Norris, D. J., Efros, Al. L., Rosen, M., Bawendi, M. G., Phys.Rev.B, 53, 16347 (1996).Google Scholar
Dybiec, M., Chomokur, G., Ostapenko, S., Wolcott, A., Zhang, J. Z., Zajac, A., Phelan, C., Sellers, T., Gerion, G., Appl. Phys. Lett. 90, 263112 (2007).CrossRefGoogle Scholar
Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A., Nesbitt, D.J., J. Chem. Phys..115, 1028 (2001).CrossRefGoogle Scholar
Tessler, N., Medvedev, V., Kazes, M., Kan, S.H., Banin, U., Science, 295, 1506 (2002).CrossRefGoogle Scholar
Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M., Seifalian, A. M., Biomaterials 28, 4717 (2007).CrossRefGoogle Scholar
Bailey, R.E., Smith, A.M., Nie, Sh., Physica E, 25, 112 (2004).Google Scholar
Zhang, C.Y., Yeh, H.C., Kuroki, M.T., Wang, T.H.. Nat Mater 4, 826–31 (2005).Google Scholar
Han, M.Y., Gao, X.H., Su, J.Z., Nie, S., Nat Biotechnol, 19, 631 (2001).CrossRefGoogle Scholar
Torchynska, T.V., Nanotechnology, 20, 095401 (2009).CrossRefGoogle Scholar
Torchynska, T. V., Douda, J., Calva, P. A., Ostapenko, S. S. and Peña Sierra, R.. J. Vac. Sci.. &Technol. 27(2), 836 (2009).CrossRefGoogle Scholar
Vega Macotela, L. G., Douda, J., Torchynska, T. V., Peña Sierra, R. and Shcherbyna, L., phys.stat.solid. (c), 7, 724 (2010).Google Scholar
Parak, W. J., Gerion, D., Zanchet, D., Woerz, A. S., Pellegrino, T., Ch, Micheel, Williams, Sh. C., Seitz, M., Bruehl, R. E., Bryant, Z., Bustamante, C., Bertozzi, C. R., and Alivisatos, A. P., Chem. Mater. 14, 2113 (2002).CrossRefGoogle Scholar
Wolcott, A., Gerion, D., Visconte, M., Sun, J., Schwartzberg, Ad., Chen, Sh., and Zhang, J. Z., J. Phys. Chem. B, 110, 5779 (2006).CrossRefGoogle Scholar
Clapp, A.R., Medintz, I. L., , Mauro, J. M, Fisher, Br. R., Bawendi, M. G., and Mattoussi, H., J. AM. Chem. Soc. 126, 301310 (2004).CrossRefGoogle Scholar
Torchynska, T. V., Douda, J., Ostapenko, S. S., Jimenez-Sandoval, S., Phelan, C., Zajac, A., Zhukov, T., Sellers, T., J. of Non-Crystal. Solid. 354, 2885 (2008).CrossRefGoogle Scholar
Torchynska, T. V., Diaz Cano, A., Dybic, M., Ostapenko, S., Morales Rodrigez, M., Jimenes Sandoval, S., Vorobiev, Y., Phelan, C., Zajac, A., Zhukov, T., Sellers, T., phys. stat. sol. (c), 4, 241 (2007).Google Scholar
Torchynska, T. V., Douda, J., and Peña Sierra, R., phys. stat. sol. (c), 6, S143 (2009).Google Scholar
Torchynska, T., Aguilar-Hernandez, J., Diaz Cano, A.I., Contreras-Puente, G., Becerril Espinoza, F.G., Vorobiev, Yu.V., Goldstein, Y., Many, A., Jedrzejewski, J., Bulakh, B.M. and Scherbina, L.V., Physica B, Condensed. Matter 308-310, 11081112 (2001).Google Scholar
Torchinskaya, T.V., Korsunskaya, N.E., Dzumaev, B., Bulakh, B.M., Smiyan, O.D., Kapitanchuk, A.L., Antonov, S.O., Semiconductors, 30, 792796 (1996).Google Scholar
Empedocles, S.A., Bawendi, M.G., Science, 278, 2114 (1997).CrossRefGoogle Scholar
Torchynska, T.V., “Nanocrystals and quantum dots. Some physical aspects” in the book “Nanocrystals and quantum dots of group IV semiconductors”, Editors: Torchynska, T. V. and Vorobiev, Yu., American Scientific Publisher, 1-42 (2010).Google Scholar
Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., J. Phys. Chem. Solid. 43, 475479 (1982).Google Scholar
Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., phys. stat. sol (a), 1980, 60, 565572 (1980).Google Scholar
Tran Thoai, D.B., Hu, Y.Z., Koch, S.W., Phys. Rev. B, 41, 6079 (1990).Google Scholar