Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T14:58:57.365Z Has data issue: false hasContentIssue false

Electrospinning of Single-Crystal Vanadium Oxide Nanorods

Published online by Cambridge University Press:  26 February 2011

Chunmei Ban
Affiliation:
cban1@binghamton.edu, SUNY at Binghamton, Chemistry, State University of New York at Binghamton,, Binghamton, NY, 13902-6000, United States
M. Stanley Whittingham
Affiliation:
stanwhit@binghamton.edu, State University of New York at Binghamton, Chemistry and Materials Science, Binghamton, NY, 13902, United States
Get access

Abstract

Vanadium oxide nanorods intercalated with lithium cations have been successfully formed by the hydrothermal treatment of electrospun precursors. The novelty of this synthesis method is the control of the morphology of the vanadium nanorod precursor by the electrospinning process, and then to convert to the desired compound with loss of the organic polymer while maintaining the morphology through a hydrothermal treatment. Transmission llectron microcopy shows that the single nanorods formed have a square shape cross-section with a width of less than 100nm. Electron diffraction shows that each nanorod is a single crystal, and X-ray diffraction shows that the nanorods have a layered structure with a 10.5 Å layer spacing. Their characterization, magnetic and electrochemical behavior and variable chemical composition are described together with the opportunities electrospinning presents for forming novel materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M. S., Solid State Ionics 134 169 (2000).Google Scholar
2. Takahashi, K., Limmer, S. J., Wang, Y., Cao, G., Jpn.J.Appl.Phys., 44,1B 662 (2005).Google Scholar
3. Chirayil, T., Zavalij, P. Y., Whittingham, M.Staley, Chem. Mater. 10 2629 (1998).Google Scholar
4. Zhang, F., Zavalij, Peter Y., Whittingham, M.Staley, Mater. Res. Bull. 32 701 (1997).Google Scholar
5. Zavalij, P.Y., Zhang, F., and Whittingham, M.Stanley, Solid State Sci. 4 591 (2002).Google Scholar
6. Chirayil, T., Zavalij, P.Y., and Whittingham, M.Stanley, J.Mater.Chem. 7 2193 (1997).Google Scholar
7. Whittingham, M.Stanley, and Zavalij, P.Y., Int. J. of Inorg. Mater. 3 1231 (2001).Google Scholar
8. Petkov, V., Zavalij, P.Y., Lutta, S., Whittingham, M.S., Parvanov, V., and Shastri, S., Phys. Rev. B 69, 085410 (2004).Google Scholar
9. Yu, J., Liu, S., Cheng, B., Xiong, J., Yu, Y., and Wang, J., Mater. Chem.Phys. 95 206 (2006).Google Scholar
10. Reneker, D. H., and Chun, I., Nanotechnology 7 216 (1996).Google Scholar
11. Fong, H, Chun, I., and Reneker, D.H., Polymer 40 4585(1999).Google Scholar
12. Dong, H., Nyame, V., Macdiarmid, A. G., and Jones, W. E. Jr, J. Polymer Sci., B: Polymer Phys, 42 3934 (2004).Google Scholar
13. Dong, H., Fey, E., Gandelman, A., and Jones, W. E. Jr, Chem. Mater. 18 2008 (2006).Google Scholar
14. Yao, T., Oka, Y. and Yamamoto, N., Mater. Res. Bull. 32, 701 (1997).Google Scholar
15. Colthup, N.B., Daly, L.H., and Wiberley, S.E.: Introduction to Infrared and Raman Spectroscopy, (Academic Press, Inc. Harcourt Brace Jovanovich, Publishers 3rd Ed. 1990) pp. 301305.Google Scholar
16. Ban, C. and Whittingham, M. S., J. Solid State Chem. in press.Google Scholar
17. Zhang, F., Zavalij, P. Y., and Whittingham, M. S., Mater. Res. Bull. 32 (1997) 701.Google Scholar