Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T15:52:07.950Z Has data issue: false hasContentIssue false

Electroluminescence Characteristics of Inorganic (p-GaN/MgO)-Organic (Alq3) Hybrid p-n Junction Light Emitting Diodes

Published online by Cambridge University Press:  02 March 2011

Akihiko Kikuchi
Affiliation:
Department of Engineering and Applied Sciences, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
Tomoyuki Tsuji
Affiliation:
Department of Engineering and Applied Sciences, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
Get access

Abstract

Inorganic/organic hybrid light-emitting diodes (LEDs) (IO-HyLEDs) composed of p-type GaN/n-type Tris-(8-hydoroxyquinoline) aluminum (Alq3) were fabricated with and without thin MgO electron-blocking layer (EBL) at the inorganic/organic interface. These LEDs showed clear and stable current rectifying diode characteristics and electroluminescence (EL) peaked at UV region at room temperature. For the sample with MgO-EBL, obvious enhancement of green emission from Alq3 layer was observed. This result suggests that due to effective suppression of electron transport from Alq3 to p-GaN by MgO-EBL, radiative recombination of electrons and holes in Alq3 layer was enhanced. It was indicated that the band engineering technique can be applied to control the emission property of inorganic/organic hybrid LED.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Narukawa, Y., Sano, M., Sakamoto, T., Yamada, T., and Mukai, T., phys. stat. sol. (a), 205, 1081 (2008).Google Scholar
2. Adachi, C., Baldo, M. A., Thompson, M. E., J. Appl. Phys., 90, 5048 (2001).Google Scholar
3. Agranovich, V. M., Basko, D. M., Rocca, G. c. L., and Bassani, F., J. Phys.: Condens. Matter 10, 9369 (1998).Google Scholar
4. Coe, S., Woo, W. K., Bawendi, M., and Bulovic, V., Nature, 420, 800 (2000).Google Scholar
5. Lee, C. Y., Haung, Y. T., Su, W. F., Appl. Phys. Lett. 89, 231116 (2006).Google Scholar
6. Heliotis, G., Itskos, G., Murray, R., Dawson, M. D., Watson, I. M., and Bradley, D. D. C., Adv. Mater. 18, 334 (2006).Google Scholar
7. Chang, C. Y., Tsao, F. C., Pan, C. J., Chi, G. C., Wang, H. T., Chen, J. J., Ren, F., Norton, D. P., Pearton, S. J., Chen, K. H., Chen, L. C., Appl. Phys. Lett, 88, 173503 (2006).Google Scholar
8. Kim, H., Dang, C., Soog, Y. K., Zhang, Q., Patterson, W., Nurmikko, A. V., Kim, K. K., , , Song, S. Y., and Han, J., phys. stat. sol. (c) 4, 2411 (2007).Google Scholar
9. Na, J. H., Kitamura, M., Arita, M., and Arakawa, Y., Appl. Phys. Lett. 94, 213302 (2009).Google Scholar
10. Willander, M., lozovik, Y. E., Wadeasa, A., Nur, O., Semenov, A. G., and Vonorova, N. S., Phys. Status Solidi A, 206, 853 (2009)Google Scholar
11. Na, J. H., Kitamura, M., Arita, M., and Arakawa, Y., Appl. Phys. Lett. 95, 253303 (2009).Google Scholar