Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T07:51:49.792Z Has data issue: false hasContentIssue false

Effects of Alloying Elements on the Temperature Dependence of Yield Stress in L12-Co3(Al,W)

Published online by Cambridge University Press:  16 February 2015

Zhenghao M. T. Chin
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japn
Norihiko L. Okamoto
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japn
Haruyuki Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japn
Get access

Abstract

The effects of alloying elements (Ni/Ta) on the temperature dependence of yield stress in Co3(Al,W) with the L12 structure have been investigated through compression tests of nearly single-phase polycrystalline alloys in the temperature range between room temperature to 1,473K. Compared with a ternary Co3(Al,W), a Ni/Ta-added Co3(Al,W) alloy exhibits a higher γ΄ solvus temperature and lower onset temperature of the yield stress anomaly (positive temperature dependence of yield stress), suggesting that the CSF energy is increased by Ni/Ta addition. As a consequence, the high-temperature strength in Co3(Al,W) is considerably enhanced.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R., and Ishida, K., Science 312, 90 (2006).CrossRefGoogle Scholar
Suzuki, A., DeNolf, G. C., and Pollock, T. M., Scripta Mater. 56, 385 (2007).CrossRefGoogle Scholar
Suzuki, A. and Pollock, T. M., Acta Mater. 56, 1288 (2008).CrossRefGoogle Scholar
Shinagawa, K., Omori, T., Oikawa, K., Kainuma, R., and Ishida, K., Scripta Mater. 61, 612 (2009).CrossRefGoogle Scholar
Tanaka, K., Ooshima, M., Tsuno, N., Sato, A., and Inui, H., Philos. Mag. 92, 4011 (2012).CrossRefGoogle Scholar
Tanaka, K., Ohashi, T., Kishida, K., and Inui, H., Appl. Phys. Lett. 91, 181907 (2007).CrossRefGoogle Scholar
Yao, Q., Xing, H., and Sun, J., Appl. Phys. Lett. 89, 3 (2006).Google Scholar
Miura, S., Ohkubo, K., and Mohri, T., Mater. Trans. 48, 2403 (2007).CrossRefGoogle Scholar
Okamoto, N. L., Oohashi, T., Adachi, H., Kishida, K., Inui, H., and Veyssiere, P., Philos. Mag. 91, 3667 (2011).CrossRefGoogle Scholar
Vitek, V. and Paidar, V., in Dislocations in Solids; Vol. 14, edited by Hirth, J. P. (Elsevier, Amsterdam, 2008), p. 439.Google Scholar
Veyssière, P. and Saada, G., in Dislocations in Solids; Vol. 10, edited by Nabarro, F. R. N. and Duesbery, M. S. (Elsevier, Amsterdam, 1996), p. 253.Google Scholar
Shinagawa, K., Omori, T., Sato, J., Oikawa, K., Ohnuma, I., Kainuma, R., and Ishida, K., Mater. Trans. 49, 1474 (2008).CrossRefGoogle Scholar
Ooshima, M., Tanaka, K., Okamoto, N. L., Kishida, K., and Inui, H., J. Alloys Compd. 508, 71 (2010).CrossRefGoogle Scholar
Caillard, D. and Martin, J. L., Thermally Activated Mechanisms in Crystal Plasticity (Pergamon, Amsterdam, 2003).Google Scholar