Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T02:43:23.579Z Has data issue: false hasContentIssue false

Dyes in Vertically Aligned Carbon Nanotube Arrays for Solar Cell Applications

Published online by Cambridge University Press:  30 March 2012

Gerhard Lackner
Affiliation:
University of Duisburg-Essen, Institute for Materials Science, Essen, Germany
Ingolf Endler
Affiliation:
Fraunhofer Inst. for Ceramic Technologies and Systems, Winterbergstr. 28, Dresden, Germany
Frank Meissner
Affiliation:
Fraunhofer Inst. for Ceramic Technologies and Systems, Winterbergstr. 28, Dresden, Germany
Sebastian Scholz
Affiliation:
Fraunhofer Inst. for Ceramic Technologies and Systems, Winterbergstr. 28, Dresden, Germany
Tobias Mayer-Uhma
Affiliation:
SiC Processing GmbH, Technikum, Neuteichnitzer Str. 54, Bautzen, Germany
Rocco Liebschner
Affiliation:
Dresden University of Technology, Institute for Materials Science, Dresden, Germany
Viktor Bezugly
Affiliation:
Dresden University of Technology, Institute for Materials Science, Dresden, Germany
Jan Meiss
Affiliation:
Institute for Applied Photophysics, Dresden University of Technology, Dresden, Germany
Martin Mkandawire
Affiliation:
Dresden University of Technology, Institute for Materials Science, Dresden, Germany
Richard Boucher
Affiliation:
Dresden University of Technology, Institute for Materials Science, Dresden, Germany
Alexander Michaelis
Affiliation:
Fraunhofer Inst. for Ceramic Technologies and Systems, Winterbergstr. 28, Dresden, Germany
Doru C. Lupascu
Affiliation:
University of Duisburg-Essen, Institute for Materials Science, Essen, Germany
Get access

Abstract

The infiltration of dissolved dyes into vertically aligned carbon nanotube arrays (va-CNT) is reported. The ultra hydrophobic surface of the CNT forest can be wetted and hence infiltrated for an appropriate choice of solvent. The dye-infiltrated CNT array forms a well ordered bulk-heterojunction structure for organic solar cells in which the CNT can act as a large electrode or, for appropriate energy levels, as an acceptor material. Derivatives of the small molecule copper phthalocyanine or the polymer poly(3-hexylthiophene) were used as dyes. Drop coating was chosen as the infiltration technique resulting in a completely embedded CNT forest. Field emission secondary electron microscopy analysis illustrates the final layer quality. Common electrical characterization under AM1.5 illumination proves photosensitivity and implies photovoltaic behavior of the composite.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56–6 (1991).Google Scholar
2. Frank, S. et al. ., Science 280 1744 (1998).Google Scholar
3. Hernandez, E., Rubio, A., Appl. Phys. A – Mater. 68, 287–6 (1999).Google Scholar
4. Zhu, H. W., Science 296, 884 (2002)Google Scholar
5. Jiang, K., Li, Q., Fan, S., Nature 419, 801 (2002)Google Scholar
6. Li, W. Z., Xie, S. S., Qian, L.X., Chang, B. H., Zou, B. S., Zhou, W. Y., Science 274, 1701 (1996)Google Scholar
7. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., Science 282, 1105 (1998)Google Scholar
8. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Adv. Mater. 14, 1857 (2002)Google Scholar
9. Odegard, G. M., Gates, T. S., Wise, K. E., Park, C., Siochi, E. J., Composite Sci. Techn. 63, 1671 (2003)Google Scholar
10. Jin, L., Bower, C., Zhou, O., Appl. Phys. Lett. 73, 1197 (1998)Google Scholar
11. Liu, H., Zhai, J., Jiang, L., Soft Matter 2, 811 (2006)Google Scholar
12. Wenzel, R. N., Industrial and Engineering Chemistry 28, 988 (1936)Google Scholar
13. Cassie, A. B. D., Baxter, S., Trans. Faraday Soc. 40, 0546 (1944)Google Scholar
14. Quere, D., Physica A 313, 32 (2002)Google Scholar
15. Chow, T. S., J. Phys.-Condens. Mat. 10, L445 (1998)Google Scholar
16. Tang, C. W., Appl. Phys. Lett. 48, 183 (1986)Google Scholar
17. Sariciftci, N. S., Braun, D., Zhang, C., Srdanov, V. I., Heeger, A. J., Stucky, G., Wudl, F., Appl. Phys. Lett. 62, 585 (1993)Google Scholar
18. Ago, H., Petritsch, K., Shaffer, M. S. P., Windle, A. H., Friend, R. H., Adv. Mater. 11, 1281 (1999)Google Scholar
19. Arranz-Andre´s, J., Blau, W. J., Carbon 46, 2067 (2008)Google Scholar
20. Wirth, C. T., Hofmann, S., Robertson, J., Diamond and Related Mater. 17, 1518 (2008)Google Scholar
21. Ma, W. L., Yang, C. Y., Gong, X., Lee, K., Heeger, A. J., Adv. Funct. Mater. 15, 1617 (2005)Google Scholar
22. Fillot, F., Morel, T., Minoret, S., Matko, I., Maitrejean, S., Guillaumot, B., Chenevier, B., and Billon, T., Microelectron. Eng., 82, 248 (2005)Google Scholar
23. Al-Ibrahim, M., Roth, H. K., Zhokhavets, U., Gobsch, G., and Sensfuss, S., Solar Energy Mater. Solar Cells, 85, 13 (2005)Google Scholar
24. Kymakis, E., Alexandrou, I., and Amaratunga, G. A. J., J. Appl. Phys., 93, 1764 (2003)Google Scholar