Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T16:51:42.388Z Has data issue: false hasContentIssue false

Dense Oxide Membranes for Oxygen Separation and Methane Conversion

Published online by Cambridge University Press:  10 February 2011

A. J. Jacobson
Affiliation:
University of Houston, Department of Chemistry, Houston, TX 77204–5641.
S. Kim
Affiliation:
University of Houston, Department of Chemistry, Houston, TX 77204–5641.
A. Medina
Affiliation:
University of Houston, Department of Chemistry, Houston, TX 77204–5641.
Y. L. Yang
Affiliation:
University of Houston, Department of Chemistry, Houston, TX 77204–5641.
B. Abeles
Affiliation:
University of Houston, Department of Chemistry, Houston, TX 77204–5641.
Get access

Abstract

Methane conversion to synthesis gas in membrane reactors that use dense mixed electronic-ionic conducting membranes for oxygen separation has received much recent attention. The oxygen flux achievable in these reactors depends on a combination of the bulk diffusion rate for oxygen transport and the surface reaction rate for oxygen activation and either recombination or reaction with methane. Here we compare recent oxygen permeation data for tubular membranes of La0.5Sr0.5Fe0.8Ga0.2O3-δ with our previous results for SrCO0.8Fe0.2O3-δ, SrFeCO0.5O3.25-δ. The pressure dependence of the oxygen permeation flux has been measured at different temperatures and used to determine the relative importance of bulk and surface kinetics for these oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Teraoka, Y.; Nobunaga, T.; Yamazoe, N., Chem. Lett., 503 (1988).Google Scholar
2. Teraoka, Y.; Zhang, H.; Furukawa, S.; Yamazoe, N., Chem. Lett., 1743 (1985).Google Scholar
3. Mazanec, T. J., Proceedings of the First International Conference on Ceramic Membranes, Proc. Electrochem Soc., eds. Anderson, H.U., Khandkar, A.C. and Liu, M., Pennington, NJ, PV95–24, 16 (1997).Google Scholar
4. Bouwmeester, H. J. M.; Kruidhof, H.; Burggraaf, A. J., Solid State Ionics 72, 185 (1994).Google Scholar
5. van Doorn, R. H. E.; Kruidhof, H.; Boumeester, H. J. M.; Burggraaf, A. J., Proceedings of the First International Conference on Ceramic Membranes, Proc. Electrochem Soc. eds. Anderson, H.U., Khandkar, A.C. and Liu, M., Pennington, NJ, PV95–24, 138 (1997).Google Scholar
6. Balachandran, U.; Dusek, J. T.; Mieville, R. L.; Poeppel, R. B.; Kleefisch, M. S.; Pei, S.; Kobylinski, T. P.; Udovich, C. A.; Bose, A. ?., Applied Catalysis A: General, 133, 1929, (1995).10.1016/0926-860X(95)00159-XGoogle Scholar
7. Lee, T. H., Yang, Y. L., Jacobson, A. J., Abeles, B.; Zhou, M., Solid State Ionics 100, 7785 (1997).Google Scholar
8. Lee, T. H., Yang, Y. L., Jacobson, A. J., Abeles, B.; Milner, S., Solid State Ionics 100, 8794 (1997).Google Scholar
9. Kilner, J., Second International Symposium on Ionic and Mixed Conducting Ceramics, Ed. Ramanarayanan, T. A., Worrell, W. L. and Tuller, H. L., Electrochemical Society Proceedings Vol. 94–12, 174 (1994).Google Scholar
10. Mims, C. A.; Stojanovic, M.; Joos, N.; Moudallal, H.; Jacobson, A. J., Proc. Electrochem. Soc. PV97–40, 737745 (1997).Google Scholar
11. Kim, S.; Yang, Y. L.; Jacobson, A. J.; Abeles, B.; B., Solid State Ionics in press.Google Scholar
12. Kim, S.; Yang, Y. L.; Christoffersen, R.; Jacobson, A. J., MRS Proceedings accepted 1997.Google Scholar