Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T22:11:07.778Z Has data issue: false hasContentIssue false

Aluminum Nanoparticle Synthesis by Reduction of Halides with Na/K

Published online by Cambridge University Press:  01 February 2011

Andrew P Purdy
Affiliation:
andrew.purdy@nrl.navy.mil, Naval Research Laboratory, Chemistry Division, Code 6123, 4555 Ov erlook Av, SE, Washington, DC, 20375, United States
Joel B Miller
Affiliation:
joel.miller@nrl.navy.mil, Naval Research Laboratory, Chemistry Division, Code 6123, 4555 Overlook Av, SE, Washington, DC, 20375, United States
Rhonda M Stroud
Affiliation:
rhonda.stroud@nrl.navy.mil, Naval Research Laboratory, Chemistry Division, Code 6123, 4555 Overlook Av, SE, Washington, DC, 20375, United States
Katherine A Pettigrew
Affiliation:
katherine.pettigrew@nrl.navy.mil, Naval Research Laboratory, Chemistry Division, Code 6123, 4555 Overlook Av, SE, Washington, DC, 20375, United States
Get access

Abstract

Solutions or mixtures of aluminum halides AlX3 (X = Cl, Br, I) or aluminum halide alkoxide (ROAlX2; R= i-Pr, X = Cl, Br) are prepared in toluene, or pentamethyldiethylenetriamine (PMDETA) and treated with a slight excess of 50:50 (wt.) sodium potassium alloy (Na/K). Upon agitation, the reaction takes place slowly. The reaction appears to be limited by the deposition of insoluble products on the surface of the Na/K since sonication in an ordinary ultrasonic cleaner is necessary to bring the reaction to completion in several hours. Aluminum nanoparticles (NPs) and Na and K halides are formed, and soluble Al compounds, are also formed in some cases. Lithium powder is used instead of Na/K to reduce Al(N(SiMe3)2)3 to Al NPs. In an effort to passivate the surface of the Al particles to oxidation or hydrolysis, various agents are added either during the reaction or afterward. The products are characterized by SEM, XRD, NMR, and TEM, and the stability to water and air is evaluated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.(a) Dlott, D. D. Mat. Sci. Tech. 2006, 22, 463. (b) Jouet, R. J.; Carney, J. R.; Granholm, R. H.;Sandusky, H. W.; Warren, A. D. Mat. Sci. Tech. 2006, 22, 422.Google Scholar
2.(a) Ivanov, Yu, F.; Osmonoliev, M.N.; Sedoi, V.S. Propellants Explos. Pyrotechn. 2003, 28,319333. (b) Azarkevich, E.I.; Ilyin, A.P.; Tikhonov, D.V.; Yablunowskii, G.V. Phys. Khimiya Obrabotki Materialov 1997, 4, 85-88.Google Scholar
3.(a) Haber, J. A.; Buhro, W. E. J. Am. Chem. Soc. 1998, 120, 10847. (b) Weigle, J. C.; Luhrs, C. C; Chen, C. K.; Perry, W. L; Mang, J. T.; Nemer, M. B.; Lopez, G. P.; Phillips, J. J. Phys.Chem. B 2004, 108, 18601-18607.Google Scholar
4.(a) Park, K.; Rai, A.; Zachariah, M. R. J. Nanopart. Res. 2006, 8, 455. (b) Kwon, Y.; Gromov, A. A.; Strokove, J. I. Appl. Surf. Sci. 2007, 5558. (c) Jouet, R. J.; Warren, A. D.; Rosenberg, D. M.; Bellitto V. J. Mat. Res. Soc. Symp. Proc. 2003, 800, 67-78. (d) Warren, A. D.; Rosenberg, D. M.; Bellitto, V. J.; Park, K.; Zachariah, M. R. Chem. Mater. 2005, 17, 2987-2996.Google Scholar
5.(a) Furstner, A. Angew. Chem. Int. Ed. Engl. 1993, 32, 164. (b) Rieke, R. D.; Burns, T. P.; Wehmeyer, R. M.; in High Energy Processes in Organometallic Chemistry (Ed.: K. S. Suslick), ACS Symposium Series 1987, 333, 223.Google Scholar
6. Rieke, R. D.; Chao, L. Syn. React. Inorg. Met. Org. Chem. 1974, 4, 101.Google Scholar
7. Alavi, S; Thompson, D. L. J. Phys. Chem. A 2006, 110, 1518.Google Scholar
8. Paciorek, K. J. L.; Nakahara, J. H.; Masuda, S. R. Inorg. Chem. 1990, 29, 4252.Google Scholar
9. Smith, M. E. Appl. Magn. Reson. 1993, 4, 1.Google Scholar