Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:58:07.201Z Has data issue: false hasContentIssue false

Tissue Fabrication: Reconstitution and Remodeling in Vitro

Published online by Cambridge University Press:  15 February 2011

Eugene Bell
Affiliation:
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139. CBRC, Massachusetts General Hospital East, Charlestown, MA, 02129
Sumi Scott
Affiliation:
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139. CBRC, Massachusetts General Hospital East, Charlestown, MA, 02129
Get access

Abstract

Two approaches to the reconstitution of tissues and organs are reviewed. The first consists of imitating the architecture of actual tissues and organs by combining cultured specialized cells with extracellular matrix components to produce a connective tissue substrate on or in which epithelial, mesothelial or endothelial cells can be plated or seeded and subsequently differentiate into mono or multilayered tissues and other structures. The second consists of providing an acellular framework of extracellular matrix constituents that can be occupied by adjacent host tissues after implantation in vivo and be remodeled by them to resemble the host tissues it is designed to replace. A paradigm for events in vivo, designed to study the process of remodeling of acellular matrices in vitro has been developed. The living skin equivalent (LSE), an example of a product fabricated using the first approach to tissue engineering, has been adapted to study events of extracellular matrix remodeling, relevent to the second approach to tissue engineering. After creating a disc shaped wound bed in an LSE, the wound is filled with a collagen matrix with or without added supplements and the process of epidermal wound closure and associated events in the dermis are followed. It is shown that fibroblast conditioned medium or a simple molecule such as ascorbic acid, added with no additional growth factors to the collagen matrix used to fill the wound bed, strongly stimulates the process of repair. Dermal fibroblasts from the adjacent tissue invade the collagen lattice that forms in the wound bed, and keratinocytes recruited from the wound edge overgrow the new dermal tissue. The applicability of the paradigm to the repair of vascular and other tissues will be discussed and approaches to optimizing the composition of acellular constructs considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bell, E., Ehrlich, H.P., Buttle, D.J., and Nakatsuji, T., Science, 221, 1052 (1981).Google Scholar
2. Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coloumb, B., Lapiere, C., Nusgens, B., and Neveux, Y., Journal of Invest. Derm., 81, 2s (1983).Google Scholar
3. Sher, S., Hull, B., Rosen, S., Church, D., Friedman, I.. and Bell, E., Transplantation, 36, 552 (1983).CrossRefGoogle Scholar
4. Weinberg, C. and Bell, E., Science, 231, 397 (1985).Google Scholar
5. Bell, E., Moore, H., Michie, C., Sher, S., Hull, B. and Coon, H., The J. of Exp. Zool, 232, 277 (1984).Google Scholar
6. Kagan, D., and Bell, E., Journal of Cell Biology, 107, 603a (1989).Google Scholar
7. Emerman, J.T., Enami, J., Pitelka, D. and Nandi, S., Proc. Natl. Acad. Sci. U.S. 74,4466 (1977).CrossRefGoogle Scholar
8. Omerod, E. and Rudland, P., Dev. Biol. 91, 360 (1982)CrossRefGoogle Scholar
9. Edery, M., Imagawa, W., Larson, L., and Nandi, S., Endocrinology, 116, 105 (1985).Google Scholar
10. Kawamura, K., Enami, J., Enami, S., Koezuka, M., Kohmoto, K. and Koga, M., Proc. of the Japan Acad. Series B-Physical and Biol. Sci., 62, 1 (1986)Google Scholar
11. Hamamoto, S., Imagawa, W., Wang, J. and Nandi, S., Cell Differ., 22, 191 (1988).Google Scholar
12. Hurley, D., Hwang, S. I. and Rocha, V., J. Cell Physiol., 141, 135 (1989).Google Scholar
13. Rocha, V.R., Hwang, S.I. and Ortiz, C.L., J. Cell Physiol, 132, 343 (1987).Google Scholar
14. Ohgawara, H., Mochizuki, N., Taira, T., Nishijima, S., Iwasaki, N., and Yui, R., In Vitro Dev. Biol., 26, 346 (1990)Google Scholar
15. Michalopoulos, G. and Pitot, H.C., Exp. Cell Res, 94, 70 (1975).Google Scholar
16. Mak, W.W. and Pitot, H.C., Biochem J. 198, 499 (1981).CrossRefGoogle Scholar
17. Dunn, J.C.Y., Yarmush, M.L., Koebe, H.K. and Tompkins, R.G., FASEB J. 3, 174 (1989).Google Scholar
18. Ishii, A., Nippon Sanka Fujinka Gakkai Zasshi, 41, 434, (1989).Google Scholar
19. Geggel, H.S., Friend, J, and Thaft, R., Invest. Ophthalmol. Vis. Sci., 26, 901 (1985).Google Scholar
20. Bell, E., Rosenberg, M., Kemp, P., Parenteau, N. Haimes, N., H., Chen, J., Swiderek, M., Kaplan, F., Kagan, D., Mason, V. and Boucher, L., Colloque INSERM, 177, 13 (1989).Google Scholar
21. Bell, E., Ivarsson, B., and Merrill, C., Proc. Natl. Acad. Sci. USA, 76,1274 (1979).CrossRefGoogle Scholar
22. Grinnell, F., and Lamke, C., J. Cell Sci., 66, 51 (1984).Google Scholar
23. Guidry, C. and Grinnell, F., J. Cell Sci., 79, 67 (1985).CrossRefGoogle Scholar
24. Guidry, C. and Grinnell, F., J, Cell Biol., 104, 515 (1987); C. Guidry and F. Grinnell J, Cell Biol.,104, 1097 (1987).Google Scholar
25. Gibson, G.I., Schor, S.L. and Grant, M.E., J.Cell Biol. 93, 767 (1982).Google Scholar
26. Gibson, G.I., Kielty, C., Garner, C., Schor, S., and Grant, M., Biochem. J., 211,417 (1983).Google Scholar
27. Nusgens, B., Merrill, C., Lapiere, C. and Bell, E., Collagen and Rel. Res. 4, 351, (1984).Google Scholar
28. Greve, H., Blumberg, P, Schmidt, G., Schlumberger, W., Rauterberg, J. and Kresse, H., Biochem J., 269 149 (1990).Google Scholar
29. Mauch, C., Hatamochi, A., Scharffetter, K. and Krieg, T., Exp. Cell Res., 178, 493 (1988).Google Scholar
30. Pentland, A., J. Cell Physiol., 139, 392 (1989).CrossRefGoogle Scholar
31. Bell, E., Rosenberg, M., Kemp, P., Gay, R.., Green, G.D., Muthukumaran, N. and Nolte, C., Journal of Biomechanical Engineering, 111,113 (1991).Google Scholar
32. Greisler, H., Kim, D.U., Dennis, J.W., Klosak, J.J., Widerborg, K., Endean, E.D., Raymond, R.M. and Ellinger, J., J. Vasc. Surg.,, 5, 572 (1987).CrossRefGoogle Scholar
33. Vacanti, J.P., Arch. Surg. M, 545 (1988).Google Scholar
34. Badylak, S., Geddes, L.A., Lantz, G. and Coffey, A.C., U.S. Patent No.4 902 508 (11 July 1990); S. Badylak, private communication.Google Scholar
35. Parenteau, N., Nolte, C., Bilbo, P., Rosenberg, M., Wilkins, L., Johnson, E.W., Watson, S., Mason, V., and Bell, E., J. Cell. Biochem., 45, 245 (1991).Google Scholar
36. Sarber, R., Hull, B., Merrill, C., Soranno, T., and Bell, E., Mech. Ageing and Dev. 12, 107 (1981).Google Scholar
37. Bell, E., Sher, S., and Hull, B., Scanning Electron Microscopy, IV, 1957 (1984).Google Scholar
38. Topol, B. M., Haimes, H.B., Dubertret, L. and Bell, E., J.Invest. Dermatol., 87, 642 (1986).Google Scholar
39. Bell, E., Parenteau, N., Gay, R., Nplte, C., Kemp, P., Muthukumaran, N., Bilbo, P., Eckstein, B., Hastings, C. and Johnson, E., Toxicology In vitro, In Press (1991)Google Scholar