Published online by Cambridge University Press: 01 February 2011
The use of nanoparticles as carriers of photosensitizer (PS) molecules for photodynamic therapy (PDT) has attracted much interest on core-shell nanosize structures. Herein, we used a simple aqueous solution method to synthesize Fe3O4/ZnO core-shell nanoparticles. X-ray diffraction (XRD) analyses showed the presence of well defined peaks corresponding to Fe3O4 and ZnO in as-synthesized nanocrystals. Vibrating sample magnetometer (VSM) measurements showed that these nanoparticles exhibited superparamagnetic behavior of the core with no coercivity nor remanence. X-ray photoelectron spectroscopy (XPS) analyses revealed the presence of Zn1/2 and Zn3/2 species on the surface of nanocrystals. Photoluminescence measurements showed excitonic emission of ZnO co-existing with a weak and broad defect- related green emission at room temperature. The generation of singlet oxygen was monitored via the photooxidation of diphenyl-1,3-isobenzofuran (DPBF) with different light sources, followed by absorption spectroscopy at 409 nm. The capability of synthesized nanoparticles to generate singlet oxygen has also been verified.