Hostname: page-component-7857688df4-7f72j Total loading time: 0 Render date: 2025-11-12T13:04:32.807Z Has data issue: false hasContentIssue false

Synthesis of Biomorphic Silicon Carbide from Wood

Published online by Cambridge University Press:  01 February 2011

Kwok Cheung Li
Affiliation:
kcli@phy.cuhk.edu.hk, The Chinese University of Hong Kong, Physics, Room 107, 1st Floor, Science Centre North Block,, The Chinese University of Hong Kong,, Hong Kong, Hong Kong, N/A, Hong Kong
Dickon H. L. Ng
Affiliation:
dng@phy.cuhk.edu.hk, The Chinese University of Hong Kong, Department of Physics, Room 107, 1st Floor, Science Centre North Block,, The Chinese University of Hong Kong,, Hong Kong, N/A, China, People's Republic of
Get access

Abstract

We have successfully produced biomorphic SiC ceramics from silica-infiltrated wood samples of balsa (Ochroma pyramidale) and flame tree (Delonix regia). This conversion of wood sample to a structure of SiC was performed by a sol-gel technique and a carbothermal reduction process. The biomorphic products were confirmed containing β-SiC and their structures were replica of the original structures of the raw wood samples. The biomorphic products from the denser flame tree (C-SiC) had higher specific strength than that from the biomorphic product from balsa (SiC).

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties (Pergamon Press, New York, 1998)Google Scholar
2. CAO, J., Rambo, C.R., Sieber, H., J Porous Mater. 2004, 11, 163 10.1023/B:JOPO.0000038012.58705.c9CrossRefGoogle Scholar
3. Yang, D., Qi, L., Ma, J., Adv. Mater. 2002, 14, 1543 10.1002/1521-4095(20021104)14:21<1543::AID-ADMA1543>3.0.CO;2-B3.0.CO;2-B>CrossRefGoogle Scholar
4. Shin, Y., Wang, C., Exarhos, G. J., Adv. Mater. 2005, 17, 73 10.1002/adma.200400371CrossRefGoogle Scholar
5. Shin, Y., Liu, J., Chang, J. H., Nie, Z., Exarhos, G. J., Adv. Mater. 2001, 13, 728 10.1002/1521-4095(200105)13:10<728::AID-ADMA728>3.0.CO;2-J3.0.CO;2-J>CrossRefGoogle Scholar
6. and, C.J. Brinker Scherer, G., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Boston, 1990).Google Scholar
7. Peirre, A.C., Introduction to sol-gel processing (Kluwer Academic Publishers, Boston, 1998).10.1007/978-1-4615-5659-6CrossRefGoogle Scholar
8. Herzog, A., Klingner, R., Vogt, U., Graule, T., J. Am. Ceram. Soc, 2004, 87, 784 10.1111/j.1551-2916.2004.00784.xCrossRefGoogle Scholar
9. Chakrabarti, O.P., Maiti, H.S., Majumdar, R., Bull. Mater. Sci. 2004, 27, 467 10.1007/BF02708565CrossRefGoogle Scholar
10. Shin, D.W., Park, S.S., Choa, Y.H., Niihara, K., J. Am. Ceram. Soc, 1999, 82, 3251 10.1111/j.1151-2916.1999.tb02234.xCrossRefGoogle Scholar
11. Vogli, E., Mukerji, J., Hoffman, C., Kladny, R., Siber, H., Greil, P., J. Am. Ceram. Soc. 2001, 84, 1236 10.1111/j.1151-2916.2001.tb00822.xCrossRefGoogle Scholar
12. Qian, J., Wang, J., Hou, G., Qiao, G., Jin, Z., Scripta Materialia 2005, 53, 1363 10.1016/j.scriptamat.2005.08.029CrossRefGoogle Scholar
13. Llinger, N., Strauss, E.L., Komarek, K.L., J. Am. Ceram. Soc., 1966, 49, 369 10.1111/j.1151-2916.1966.tb13287.xCrossRefGoogle Scholar