Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T13:53:53.125Z Has data issue: false hasContentIssue false

Study of Corrosion Behavior of Polyuretane/nanoHidroxiapatite Hybrid Coating in Hank Solution at 25 °C

Published online by Cambridge University Press:  11 May 2015

G. Carbajal-De La Torre
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000, Morelia, Michoacan México.
A.B. Martinez-Valencia
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000, Morelia, Michoacan México.
A. Sanchez-Castillo
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000, Morelia, Michoacan México.
M. Villagomez-Galindo
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000, Morelia, Michoacan México.
M.A. Espinosa-Medina*
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000, Morelia, Michoacan México.
Get access

Abstract

The study of corrosion behavior of polyurethane/nanohydroxyapatite hybrid coating in aerated Hank solution at 25 °C by Potentiodinamic and Electrochemical Impedance techniques was realized. The nanohydroxyapatite (nHA) powders were synthesized by ultrasonic assisted co-precipitation wet chemical method and then mixed with pure polyurethane (PU) during the polymerization. Results were supported by SEM morphologic characterization. Results showed that good corrosion resistance of hybrid coating, showing small corrosion product layer formation. Corrosion mechanisms are affected by an increasing of polarization resistance, promoting decreasing in the corrosion rates. Diffusion of ionic species was the governing mechanism in the corrosion behavior of polyurethane/nanohydroxyapatite hybrid coating.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, J.B., Bronzino, J.D., “Biomaterials, principles and applications” by CRC Press LLC, Boca Raton, Florida 33431, (2003)Google Scholar
Baqain, Z.H., Moqbel, W.Y., Sawair, F.A., British J. of Oral and Maxillofacial Surgery, 50, 239 (2012).Google Scholar
Alves, V.A., Reis, R.Q., Santos, I.C.B., Souza, D.G., Gonçalves, T. de F., Pereira-da-Silva, M.A., Rossi, A., da Silva, L.A., Corr. Sci., 51, 2473 (2009).CrossRefGoogle Scholar
Ghoneim, A.A., Fekry, A.M., Ameer, M.A., Electroch. Acta, 55, 6028 (2010).CrossRefGoogle Scholar
Lai, Y., Li, Y., Jiang, L., Xu, W., Lv, X., Li, J., Liu, Y., J. Electroanal. Chem., 671, 16 (2012).CrossRefGoogle Scholar
Zomorodian, A., Brusciotti, F., Fernandes, A., Carmezim, M.J., Moura e Silva, T., Fernandes, J.C.S., Montemor, M.F., Surf. Coat. Tech. 206, 4368 (2012).CrossRefGoogle Scholar
Parada-Quinaya, D.C., Estupinan Duran, H.A., Pena Ballesteros, D.Y., Vasquez Quintero, C., Laverde Catano, D., Ingeniare, 17, 365 (2009).Google Scholar
Vermette, P., Griesser, H.J., Laroche, G., Guidoin, R., “Biomedical applications of polyurethanes”, Texas USA: Landes Bioscience Georgetown, (2001).Google Scholar
Martínez Valencia, A.B., Carbajal De la Torre, G., Duarte Moller, A., Esparza Ponce, H.E., Espinosa Medina, M.A., Int. J. Phys. Sci., 6, 6681 (2011).Google Scholar
Martinez Valencia, A.B., Carbajal De la Torre, G., Torres Sánchez, R., Téllez Jurado, L., Esparza Ponce, H.E., Int. J. Phys. Sci., 6, 2731 (2011).Google Scholar
Carvajal De La Torre, G., Nava Mendoza, R., Espinosa Medina, M.A., Martinez Villafañe, A., Gonzalez-Rodriguez, J.G., Castaño, V.M., British Corr. J., 37, 293 (2002).CrossRefGoogle Scholar
Carbajal de la Torre, G., Espinosa Medina, M.A., Martinez Villafañe, A., Gonzalez Rodriguez, J.G., Castaño, V.M., The Open Corr. J., 2, 197 (2009).CrossRefGoogle Scholar