Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T11:57:34.527Z Has data issue: false hasContentIssue false

Space Charge Limited Current in Porous Silicon with traces of Nitrogen Dioxide

Published online by Cambridge University Press:  01 February 2011

Stefano Borini
Affiliation:
Nanotechnology and Microsystems Dept., IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Torino, Italy
Andrea M. Rossi
Affiliation:
Nanotechnology and Microsystems Dept., IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Torino, Italy
Luca Boarino
Affiliation:
Nanotechnology and Microsystems Dept., IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Torino, Italy
Giampiero Amato*
Affiliation:
Nanotechnology and Microsystems Dept., IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Torino, Italy
*
*Corresponding author, E-mail: gamato@ien.it
Get access

Abstract

The discovery of the steep increase of electrical conductivity in Porous Silicon (PS) samples in contact with Nitrogen Dioxide, NO2, opens the possibility to study the electrical conduction processes in nanostructured systems from a completely new point of view. The system undergoes a change of conductivity of 5 orders of magnitude when exposed to few ppm of NO2, whereas the free charge concentration increases by only one order of magnitude in the same pressure range. Upon NO2 exposure the system transition from an “insulator-like” to a “semiconductor-like” behaviour can be studied by means of several techniques. In this paper, the results from a Space Charge Limited Current (SCLC) study unambiguously demonstrate the change of the charging status of defects upon NO2exposure, and explain some “exotic” effects recently reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Boarino, L., Baratto, C., Geobaldo, F., Amato, G., Comini, E., Rossi, A. M., Faglia, G., Lérondel, G., and Sberveglieri, G., Mater. Sci. Eng., B 69-70, 210 (2000).Google Scholar
2 Geobaldo, F., Onida, B, Rivolo, P., Borini, S., Boarino, L., Rossi, A., Amato, G., Garrone, E., Chem Commun 7, 2196–7 (2001).Google Scholar
3 Geobaldo, F., Rivolo, P., Borini, S., Boarino, L., Amato, G., Chiesa, M., and Garrone, E., J. Phys. Chem. B, 108, 18306, (2004).Google Scholar
4 Timoshenko, V. Y., Dittrich, T., Lysenko, V., Lisachenko, M. G., and Koch, F., Phys. Rev. B 64, 085314 (2001).Google Scholar
5 Baratto, C., Faglia, G., Sberveglieri, G., Boarino, L., Rossi, A. M., and Amato, G., Thin Solid Films 391, 261 (2001).Google Scholar
6 Pancheri, L., Otón, C. J., Gaburro, Z., Soncini, G., and Pavesi, L., Sens. Actuators B 89, 237 (2003).Google Scholar
7 Gaburro, Z., Otón, C. J., Pavesi, L., and Pancheri, L., Appl. Phys. Lett. 84, 4388 (2004).Google Scholar
8 Lampert, M. A. and Mark, P., Current Injection in Solids (Academic, New York, 1970), p.27.Google Scholar
9 Amato, G., Boarino, L. and Bellotti, F., Appl. Phys. Lett. 85, 4409 (2004).Google Scholar
10 Golden, K., Phys. Rev. Lett. 65, 2923, (1990).Google Scholar