Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:41:27.487Z Has data issue: false hasContentIssue false

Sorption of Caesium on Commercial Magnetite with low Silica Content: Experimental and Modelling

Published online by Cambridge University Press:  01 February 2011

Miquel Rovira
Affiliation:
Centre Tecnològic de Manresa, Technical University of Catalonia, Av. Bases Manresa 1, 08240 Manresa, Spain Chemical Engineering Department, Technical University of Catalonia, 08028 Barcelona, Spain
Joan de Pablo
Affiliation:
Centre Tecnològic de Manresa, Technical University of Catalonia, Av. Bases Manresa 1, 08240 Manresa, Spain Chemical Engineering Department, Technical University of Catalonia, 08028 Barcelona, Spain
Ignasi Casas
Affiliation:
Chemical Engineering Department, Technical University of Catalonia, 08028 Barcelona, Spain
Javier Giménez
Affiliation:
Chemical Engineering Department, Technical University of Catalonia, 08028 Barcelona, Spain
Frederic Clarens
Affiliation:
Chemical Engineering Department, Technical University of Catalonia, 08028 Barcelona, Spain
Get access

Abstract

Interaction of Cs on commercial magnetite has been studied under different experimental conditions at high solid/liquid ratios. At pH 8.2 the Freundlich isotherm was able to describe an important range of the experimental data and at high Cs concentration surface precipitation was found likely to occur. Special attention has been given to silica, present in the system as an impurity of magnetite, since it plays an important role on the sorption mechanism in which a ternary complex magnetite-Si-Cs is formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smailos, E., Schwarzkopf, W., Kienzler, B. and Köster, R., Mat. Res. Soc. Symp. Proc. 257, 399406 (1992)Google Scholar
2. Venkataramani, B., Venkateswarlu, K. S. and Shankar, J., J. Colloid Interface Sci. 67, 187194 (1978)Google Scholar
3. Todorovic, M., Milonjic, S. K., Comor, J. J. and Gal, I. J., Separation Sci., and Tech. 27, 671679 (1992)Google Scholar
4. Catalette, H., Dumonceau, J. and Ollar, P., J. Contaminant Hyd. 35, 151159 (1998)Google Scholar
5. Marmier, N., Delisée, A. and Fromage, F., J. Colloid Interface Sci. 211, 5460 (1999)Google Scholar
6. Ebner, A. D., Ritter, J. A. and Navratil, J. D., Ind. Eng. Chem. Res. 40, 16151623 (2001)Google Scholar
7. Marmier, N. and Fromage, F., J. Colloid Interface Sci. 223, 8388 (2000)Google Scholar
8. Lützenkirchen, J., J. Colloid Interface Sci. 237, 297298 (2001)Google Scholar
9. Marmier, N., J. Colloid Interface Sci. 237, 299300 (2001)Google Scholar
10. Marmier, N., Delisée, A. and Fromage, F., J. Colloid Interface Sci. 212, 228233 (1999)Google Scholar
11. Schwertmann, U. and Cornell, R. M. in Iron Oxides in the laboratory (VCH, 1991)Google Scholar
12. Dzombak, D. A. and Morel, F. M. M., Surface Complexation Modeling Hydrous Ferric Oxide. Willey-Interscience 1990 Google Scholar
13. Davis, J.A. and Kent, D.B. in Mineralogy: Mineral Water Interface Geochemistry, edited by Hochella, M. F. Jr and White, A. F., 23, pp. 17248. The Mineralogical Society of America 1990 Google Scholar
14. Herbelin, A. L. and Westall, J. C., FITEQL A computer program for determination of chemical equilibrium constants from experimental data, Oregon State University 1996.Google Scholar
15. Dove, P. M. in Chemical weathering rates of silicate minerals, edited by White, A. F. and Brantley, S. L., 31, pp. 235290. The Mineralogical Society of America 1995 Google Scholar