Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T00:59:13.775Z Has data issue: false hasContentIssue false

Solidified Fillings of Nanopores

Published online by Cambridge University Press:  15 February 2011

Patrick Huber
Affiliation:
Technische Physik, Universität des Saarlandes, D-66041 Saarbrücken (Germany)
Klaus Knorr
Affiliation:
Technische Physik, Universität des Saarlandes, D-66041 Saarbrücken (Germany)
Get access

Abstract

We present a selection of x-ray diffraction patterns of spherical (He, Ar), dumbbell- (N2, CO), and chain-like molecules (n-C9H20, n-C19H40) solidified in nanopores of silica glass (mean pore diameter 7nm). These patterns allow us to demonstrate how key principles governing crystallization have to be adapted in order to accomplish solidification in restricted geometries. 4He, Ar, and the spherical close packed phases of CO and N2 adjust to the pore geometry by introducing a sizeable amount of stacking faults. For the pore solidified, medium-length chainlike n-C19H40 we observe a close packed structure without lamellar ordering, whereas for the short-chain C9H20 the layering principle survives, albeit in a modified fashion compared to the bulk phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Buerger, M. J., Elementary crystallography, J. Wiley and Sons, NY (1963).Google Scholar
2 Solids, Rare Gas, Klein, M. L., Venables, J. A. eds., Academic Press, London (1977); N. G. Parsonage and L.A.K. Staveley, Disorder in Crystals, Clarendon, Oxford (1978).Google Scholar
3 Huber, P. and Knorr, K., Phys. Rev. B 60, 12657 (1999).Google Scholar
4 Baumert, J., Asmussen, B., Gutt, C., Kahn, R., J. Chem. Phys. 116, 10869 (2002).Google Scholar
5 Levitz, P., Ehret, G., Sinha, S. K., Drake, J. M., J. Chem. Phys. 95, 8 (1991).Google Scholar
6 Wallacher, D., Rheinstaedter, M., Hansen, T., Knorr, K., J. Low Temp. Phys., in press.Google Scholar
7 Huber, P., Wallacher, D., Knorr, K., Phys. Rev. B 60, 12666 (1999).Google Scholar
8 Hofmann, T., Wallacher, D., Huber, P., Knorr, K., J. Low Temp. Phys., in press.Google Scholar
9 Huber, P., Wallacher, D., Albers, J., Knorr, K., Europhys. Lett. 65, 351 (2004).Google Scholar
10 Kumar, S., “Liquid Crystals”, Cambridge University Press, Cambridge (2001).Google Scholar
11 Dorset, D.L., J. Phys. D 32, 1276 (1999).Google Scholar
12 Zhao, D. et al. , Science 279, 548 (1998); Kresge C.T. et al. Nature 359, 710 (1992).Google Scholar
13 Morishige, K. and Kawano, K., J. Phys. Chem. B 104, 2894 (2000). K. Morishige and Y. Ogisu, J.Chem. Phys. 114, 7166 (2001); K. Morishige and H. Uematsu, J. Chem. Phys. 122, 044711 (2005).Google Scholar
14 Christenson, H. K., J. Phys. Cond. Matt. 13, R95 (2001); D. Wallacher, K. Knorr, Phys. Rev. B 63, 104202 (2001); V. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, A.V. Kityk, Phys. Rev. B 67, 144105 (2003); D. Wallacher, N. Kunzner, D. Kovalev, N. Knorr, K. Knorr, Phys. Rev. Lett. 92, 195704 (2004).Google Scholar
15 Silva, D.E. et al. , Phys. Rev. Lett. 88, 155701 (2002), D.W. Brown et. al., Phys. Rev. Lett. 81, 1019 (1998); M. Schindler et. al., Phys. Rev. B 53, 11451 (1996).Google Scholar
16 Urbakh, M., Klafter, J., Gourdon, D., Israelachvilli, J., Nature 430, 525 (2004); K. Murata et al. Nature 407, 599 (2000); N. E. Chayen, Current Opinions in Structural Biology 14, 577 (2004).Google Scholar
17 Chayen, N.E., Saridakis, E., El-Bahar, R., Nemirovsky, Y., J. Mol. Biology, 312, 591 (2001); L. Rong, H. Komatsu, I. Yoshizaki, A. Kadowaki and S. Yoda, J. Synchr. Radiation News 11, 27 (2004).Google Scholar