Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T19:45:44.950Z Has data issue: false hasContentIssue false

P-N Junction Formation in Electron-beam Irradiated Graphene Step

Published online by Cambridge University Press:  18 April 2012

Xiaomu Wang
Affiliation:
Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
Chengliang Wang
Affiliation:
Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
Jian-Bin Xu
Affiliation:
Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
Get access

Abstract

We show that graphene mono-/bilayer step operates as an abrupt p-n (p-p+) junction. Due to the thickness-dependent oxidation effect, the uniform channel can be adjusted to spatially asymmetrical junction by means of electron beam irradiation. The lithography-free process on OTMS modified substrate possesses the merit of clean surface and high performance. This conveniently fabricated graphene step device opens an opportunity to study the intrinsic interface across a well defined junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K. S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. Firsov, A.A. Science 306, 666669 (2004).Google Scholar
2. Novoselov, K.S., Jiang, K., Schedin, F., Booth, T.J., khotkevich, V.V., Morozov, S.V., Geim, A.K. Proceedings of the National Academy of Sciences of the United States of America 102, 1045110453, (2005).Google Scholar
3. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Nature 438, 197200 (2005).Google Scholar
4. Geim, A.K., Novoselov, K.S., Nature Materials 6, 183191 (2006).Google Scholar
5. Abanin, D. A., Levitov, L. S., Science 317, 641643 (2007).Google Scholar
6. Williams, J. R., DiCarlo, L., Marcus, C. M., Science 317, 638641 (2007).Google Scholar
7. Chiu, H.-Y., Perebeinos, V., Lin, Y.-M., Avouris, P., Nano Letters 10, 46344639, (2010).Google Scholar
8. Lohmann, T., von Klitzing, K., Semt, J. H., Nano Letters 9, 19731979 (2009).Google Scholar
9. Farmer, D.B., Lin, Y.-M., Afzali-Ardakani, A., Avouris, P., Applied Physics Letters 94, 213106 (2009).Google Scholar
10. Brenner, K., Murali, R., Applied Physics Letters 96, 063104 (2010).Google Scholar
11. Warner, J.H., Rummeli, M.H., Ge, L., Gemming, T., Montanari, B., Harrison, N.M., Buchner, B., Briggs, G.A.D. Nat. Nano. 4, 500504 (2009).Google Scholar
12. Childres, I., Jauregui, L.A., Foxe, M., Tian, J., Jalilian, R., Jovanovic, I., Chen, Y.P., Applied Physics Letters 97, 173109–173103 (2010).Google Scholar
13. Xu, Z., Chen, L., Li, J., Wang, R., Qian, X., Song, X., Liu, L., Chen, G., Applied Physics Letters 98, 183112 (2011).Google Scholar
14. Wang, X. M., Xu, J.-B., Wang, C. L., Xie, W. G., Du, J., Adavanced Materials 23, 24642468 (2011).Google Scholar
15. Wu, Z.J., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., Tang, D., Yu, B., Jiang, C., Cheng, H.M. ACS Nano 3, 411417(2009).Google Scholar
16. Nourbakhsh, A., et al. . The Journal of Physical Chemistry C, 115, 1661916624(2011).Google Scholar
17. Liu, L., Ryu, S., Tomasik, M.R., Stolyarova, E., Jung, N., Hybersten, M.S., Steigerwald, M.L., Brus, L.E., Flynn, G.W. Nano Letters 8, 19651970 (2008).Google Scholar
18. Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., Banerjee, S.K. Applied Physics Letters 94, 062107 (2009).Google Scholar