Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T00:49:13.294Z Has data issue: false hasContentIssue false

Photo-induced Large Area Growth Of Dielectrics With Excimer Lamps

Published online by Cambridge University Press:  10 February 2011

Ian W. Boyd
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WCIE 7JE, United Kingdom
Jun-Ying Zhang
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WCIE 7JE, United Kingdom
Get access

Abstract

In this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature LW annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 Acm−2 and 1.95×10−7 Acm−2 at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD. respectively - several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9 Acm−2 and 6.4× 10−9 Acm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7 A/cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature, A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K. and Timp, G., Nature, 399 (1999) 758.Google Scholar
2 Semiconductor industry Association The National Technology Roadmap for Semicond. 71–78 (Sematech Austin, 1997)Google Scholar
3 Schulz, M., Nature, 399 (1999) 729.Google Scholar
4 Billman, C.A., Tan, P.H., Hubbard, K.J., and Schlom, D.G., Mat. Res. Soc. Symp. Proc. 567 (1999) 409.Google Scholar
5 Jia, Q.X., Wu, X.D., Foltyn, S.R., and Tiwari, P., Appn. Phys. Lett. 66(1995) 2197.Google Scholar
6 Singh, R., Alamgir, S., and Sharangpani, R., Appl. Phys. Lett. 67 (1995) 3939.Google Scholar
7 Tanimoto, S., Matsui, M., Kamisako, K., Kuroiwa, K., and Tarui, Y., J. Electrochem. Soc. 139(1992) 320.Google Scholar
8 Nishimura, Y., Tokunaga, K. and Tsuji, M., Thin Solid Films 226 (1993) 144.Google Scholar
9 Kwon, KW, Kang, CS, Park, SO, Kang, HK, Ahn, ST, IEEE Trans Electron Devices 43 (1996) 919.Google Scholar
10 Zhang, J.-Y., Lim, B., Dusastre, V., and Boyd, I.W., Appl. Phys. Lett. 73 (1998) 2299.Google Scholar
11 Shinriki, H., Kisu, T., Nishioka, Y., Kawamoto, Y., and Mukai, K., IEEE Trans. Electron Devices 37 (1990) 1939.Google Scholar
12 Cava, R.F., Peck, W.F. Jr and Krajewski, J.J., Nature, 377 (1995) 215.Google Scholar
13 Cappellani, A., Keddie, J.L., Barradas, N.P. and Jackson, S.M., Solid-State Electronics, 43 (1999) 1095.Google Scholar
14 Cava, R.J. and Krajewski, J.J., J. Appl. Phys. 83 (1998) 1613.Google Scholar
15 Kamiyama, S., Suzuki, It., Watanabe, H., Sakai, A., Kimura, H., and Mizuki, J.. J. Electrochem Soc., 141 (1994) 1246.Google Scholar
16 Pignolet, A., Rao, G. M., Krupanidhi, S.B., Thin Solid Films, 258 (1995) 230.Google Scholar
17 Sun, S.C. and Chen, T.F.. IEEE Electron Device letters 17 (1996) 355.Google Scholar
18 Park, S.W., Baek, Y.K., Lee, J.Y., Park, C.O. and Im, H.B., J. Electronic. Mater. 21 (1992) 635.Google Scholar
19 Zaima, S., Furuta, T., Koide, Y., and Yasuda, Y., J. Electrochem. Soc. 137 (1992) 2876.Google Scholar
20 Kamiyama, S., Lesaicherre, P.. Suzuki, H., Nishiyama, I. and Ishitani, A., J. Electrochem. Soc. 140 (1993) 1617.Google Scholar
21 Autran, J.L., Paillet, P., Leray, J.L., and Devine, R.A.B., Sensors and Actuators A 51 (1995) 5.Google Scholar
22 Zhang, J.-Y., Dusastre, V., Williams, D.E. and Boyd, I.W., J. Phys, D: Appl. Phys. 32 (1999) L1.Google Scholar
23 Shinriki, H. and Nakata, M., IEEE Trans. Electron. Dev. 38 (1991) 455.Google Scholar
24 Zhang, J.-Y., Fang, Q., and Boyd, I.W., Appl. Surf. Sci. 138–139 (1999) 320.Google Scholar
25 Devine, R.A.B., Appl. Phys. Lett. 68 (1996) 1924.Google Scholar
26 Zhang, J.-Y.. Lim, B., and Boyd, I.W., Thin Solid Films 336 (1998) 340.Google Scholar
27 Isobe, C. and Saitoh, M., Appl. Phys. Lett. 56 (1990) 907.Google Scholar
28 Zhang, J.-Y. and Boyd, I.W., J. of Mater. Sci. Lett. 17 (1998) 1507.Google Scholar
29 Murawala, P.A., Sawai, M., Tatsuta, T., Tsuji, O., Fujita, S., and Fujita, S., Jpn. J. Appl. Phys. 32 (1993) 368.Google Scholar
30 Sankur, H.O. and Gunning, W., Appl. Opt. 28 (1989) 2806.Google Scholar
31 Kim, I.L., Kim, J.S., Kwon, O.S., Ahn, S.T., Chun, J.S. and Lee, W.J., J. Electron. Mater. 24 (1995) 1435.Google Scholar
32 Laviale, D., Oberlin, J.C., and Devine, R.A.B., Appl. Phys. Lett. 65 (1994) 2021.Google Scholar
33 Matsui, M., Oka, S., Yamagishi, K., Kuroiwa, K., and Tarui, Y., Jpn. J. Appl. Phys. 27 (1988) 506.Google Scholar
34 Oshio, S.. Yamamoto, M., Kuwata, J., and Matsuoka, T., J. Appl. Phys. 71 (1992) 3471.Google Scholar
35 Aoyama, T., Yamazaki, S., and Imai, K., J. Electrochem. Soc. 145 (1998) 2961.Google Scholar
36 Eliasson, B. and Kogelschatz, U., Appl. Phys. B 46 (1988) 299.Google Scholar
37 Eliasson, B. and Kogelschatz, U., Proc. 40 Ann. Gas. Electron. Conf. (GEC 87), Atlanta 1987, p. 174.Google Scholar
38 Gellert, B., Eliasson, B. and Kogelschatz, U., Proc. 5 Int. Symp. on the Science & Technology of Light Sources (LS:5), York 1989, p.155 and 181.Google Scholar
39 Kogelschatz, U., Pure & Appl. Chem. 62 (1990) 1667.Google Scholar
40 Kogelschatz, U., Appl. Surf. Sci. 54 (1992) 410.Google Scholar
41 Zhang, J.-Y. and Boyd, I.W., J. Appl. Phys. 80 (1996) 633.Google Scholar
42 Zhang, J.-Y. and Boyd, I.W., J. Appl. Phys. 84 (1998) 1174.Google Scholar
43 Boyd, I.W. and Zhang, J.-Y., Nucl. Instrum. Meth. Phys. Res. B 121 (1997) 349.Google Scholar
44 Bergonzo, P. and Boyd, I.W.. J. Appl. Phys. 76 (7) (1994) 4372.Google Scholar
45 Bergonzo, P. and Boyd, I.W.. Appl. Phys. Lett. 63 (1993) 1757.Google Scholar
46 Zhang, J.-Y., Bie, L.-J., and Boyd, I.W., Jpn. J. Appl. Phys. 37 (1998) L27.Google Scholar
47 Zhang, J.-Y., Bie, B.-J., Dusastre, V. and Boyd, I.W., Thin Solid Films 318 (1998) 252.Google Scholar
48 Esrom, H., Denmy, J., and Kogelschatz, U., Chemtronics 4 (1989) 202.Google Scholar
49 Esrom, H. and Kogelschatz, U., Appl. Surf. Sci. 46 (1990) 158.Google Scholar
50 Esrom, H. and Kogelschatz, U., Appl. Surf. Sci. 54 (1992) 440.Google Scholar
51 Zhang, J.-Y., Fang, Qi, King, S.L. and Boyd, Ian W., Appl. Surf. Sci. 109/10 (1997) 487.Google Scholar
52 Zhang, J.-Y., Esrom, H., and Boyd, I.W., Appl. Surf. Sci. 96–98 (1996) 399.Google Scholar
53 Zhang, J.-Y. and Boyd, I.W., J. Mat. Sci. Lett. 16 (1997) 996.Google Scholar
54 Zhang, J.-Y. and Boyd, I.W., Appl. Phys. A 65 (1997) 379.Google Scholar
55 Zhang, J.-Y. and Boyd, I.W., Thin Solid Films, 318 (1998) 234.Google Scholar
56 Zhang, J.-Y. and Boyd, I.W., Electronics Letters, 32 (1996) 2097.Google Scholar
57 Cracium, V., Hutten, B., Williams, D.E. and Boyd, I.W., Electronics Letters 34 (1998) 71 Google Scholar
58 Zhang, J.-Y. and Boyd, I.W., Appl. Phys. Lett. 71 (1997) 2964.Google Scholar
59 Craciun, V.. Zhang, J-Y. and Boyd, I.W., NATO Fund. Aspects of Ultrathin Dielectrics on Si-based Dev. 1997, pp461.Google Scholar
60 Esrom, H. and Kogelschatz, U., Thin solid films, 218 (1992) 231.Google Scholar
61 Zhang, J.-Y., Thesis, Karlsruhe University, Germany, 1993.Google Scholar
62 Esrom, H., Zhang, J.-Y., and Kogelschatz, U., Mat. Res. Symp. Proc. 236 (1992) 39.Google Scholar
63 Zhang, J.-Y., Esrom, H., Kogelschatz, U. and Emig, G., Appl. Surf. Sci. 69 (1993) 299.Google Scholar
64 Zhang, J.-Y., Esrom, H., Kogelschatz, U., and Emig, G., J. of Adhesion Sci. and Technol. 8 (1994) 1179.Google Scholar
65 Zhang, J.-Y., Esrom, H., and Boyd, I.W., Surface and Interface Analysis 24 (1996) 718.Google Scholar
66 Craciun, V., Boyd, I.W., Craciun, D., Andreazza, P. and Perriere, J., J. Appl. Phys. 85 (1999) 8841.Google Scholar
67 Craciun, V., Craciun, D., Andreazza, P., Perriere, J. and Boyd, I.W., Appl. Surf. Sci. 139 (1999) 587.Google Scholar
68 Kogelschatz, U., NATO Advanced Research Workshop on Non-thermal Plasma Teclmiques for Pollution Control, Cambridge University, UK, September 21-25, 1992.Google Scholar
69 Nohr, R.S. and MacDonald, LG., Kogelschatz, U., Mark, G., Schuchmann, H.-P. and Sonntag, C. von, J. Pholochem. Photobiol. A: Chem. 79 (1994) 141.Google Scholar
70 Zhang, J.-Y. and Boyd, I.W., Mat. Res. Symp. Proc. 471 (1997) 53.Google Scholar
71 Urakabe, T., Ilarada, S., Saikatsu, T. and Karino, M., Sci, and Tech. of light Sources (1S7) Kyoto, 1995, Eds: Italani, R. and Kamiya, S., pp159.Google Scholar
72 Bergonzo, P., Kogelschatz, U., and Boyd, I.W., Appl. Surf. Sci. 69 (1993) 393.Google Scholar
73 Bergonzo, P., Kogelschatz, U., and Boyd, I.W., SPIE, Vol 2045 (1994) 174.Google Scholar
74 Bergonzo, P. and Boyd, I.W., Electronics Letters, 30 (1994) 606.Google Scholar
75 Bergonzo, P. and Boyd, I.W., Microelectronic Engineering 25 (1994) 345.Google Scholar
76 Eftekhari, G., J. Electrochem. Soc. 140 (1993) 787.Google Scholar
77 Gellert, B., Kogelschatz, U., Appl. Phys. B 52 (1991) 14.Google Scholar
78 Stevens, B. and Hutton, E., Nature, 186 (1960) 1045.Google Scholar
79 Malinin, A.N., Shuaibov, A.K. and Shevera, V.S., J. Appl. Spectrosc., 32 (1980) 313.Google Scholar
80 Volkova, G.A., Kirillova, N.N., Pavlovskaya, E.N. and Yakovleva, A.V., J. Appl. Spectrosc. 41 (1984)1194.Google Scholar
81 Eliasson, B. and Gellert, B., J. Appl. Phys. 68 (1990) 2026.Google Scholar
82 Eliasson, B., Hirth, M. and Kogelschatz, U., J. Phys D: Appl. Phys. 20 (1987) 1421.Google Scholar
83 Neiger, M., Schorpp, V. and Stockwald, K., Proc. 41. Ann. Gaseous Electron. Conf. (GEC 88), Minneapolis p.74, 1988.Google Scholar
84 Boyd, I.W. and Zhang, J.-Y., Mat. Res. Symp. Proc. 470 (1997) 343.Google Scholar
85 Ametepe, J.D., Diggs, J., Manos, D.M. and Kelley, M.J., J. Appl. Phys. 85 (1999) 7505.Google Scholar
86 Patel, P., Boyd, I.W., Appl. Surf. Sci. 46 (1990) 352.Google Scholar
87 Kessler, F. and Bauer, G.H., Appl. Surf. Sci. 54 (1992) 430.Google Scholar
88 Kessler, F., Mohring, H.D., Bauer, G.H., Proc. of the 9th Conf. on Plasma Chem. 3 (1989) 1383.Google Scholar
89 Manfredotti, C., Fizotti, F.. Boero, M., Piatti, G., Appl. Surf. Sci. 69 (1993) 127.Google Scholar
90 Bollanti, B., Clementi, G., Lazzaro, P.D., Flora, F., Giordano, G., Letardi, T., Muzzi, F., Schina, G. and Zheng, C.E., IEEE Transactions on Plasma Science 27 (1999) 211.Google Scholar
91 Shuaibov, A.K., Shimon, L.L. and Shevera, I.V., Insir. and Experimental Tech. 41 (1998) 427.Google Scholar
92 Barnes, P.N. and Kushner, M.J., J. Appl. Phys. 80 (1996) 5593.Google Scholar
93 Kawanaka, J., Ogata, A., Kubodera, S., Sasaki, W. and Kurosawa, K., Appl. Phys. B-Lasers and Optics 65 (1997) 609.Google Scholar
94 Kitamura, M., Mitsuka, K. and Sato, f., Appl. Surf. Sci. 80 (1994) 507.Google Scholar
95 Nakamura, T., Kannari, F. and Obara, M., Appl. Phys. Lett. 57 (1990) 2057.Google Scholar
96 El-Habachi, A. and Schoenbach, K.H., Appl. Phys. Lett. 72 (1998) 1.Google Scholar
97 Kogelschatz, U., Eliasson, B. and Egli, W.. J. Phys. IV France 7 (1997) C447.Google Scholar
98 Rhodes, Ch. K. “Excimer Lasers”, Vol. 30 of Topics in Applied Physics, Springer-Verlag, Berlin, 1984.Google Scholar
99 Zhang, J.-Y., Esrom, H., and Boyd, I.W., Appl. Surf. Sci. 109/110 (1997) 482.Google Scholar
100 Zhang, J.-Y., Esrom, H., and Boyd, I.W., Appl. Surf. Sci. 138–139 (1999) 315.Google Scholar
101 Boyd, I.W. and Zhang, J.-Y., Advanced Laser Technologies (ALT99), Potenza-Lecce, Italy, Sept 20-24, 1999.Google Scholar
102 Ohishi, T., Maekawa, S. & Katoh, A., J. Non-Cryst. Solids 147&148 (1992) 493.Google Scholar
103 Lo, G.Q., Kwong, D.L., and Lee, S., Appl. Phys. Lett. 60 (1992) 3286.Google Scholar
104 An, C.H. and Sugimoto, K., J. Electrochem Soc. 139 (1992) 1956.Google Scholar
105 Zhang, J.-Y., Dusastre, V., Williams, D.E. and Boyd, I.W., J. Phys. D: Appl. Phys. 32 (1999) L1.Google Scholar
106 Kaliwoh, N., Zhang, J.-Y. and Boyd, I.W., Surface and Coating Technology 125 (2000) 424.Google Scholar
107 Zhang, J.-Y. and Boyd, I.W., Jpu. J. Appl. Phys. 38 (1999) L393.Google Scholar
108 Singer, P., Semiconductor International, October 1994, p. 34.Google Scholar
109 Murarka, S.P., Solid State Technology 39 (1996) 8390.Google Scholar
110 Zhang, J.-Y. and Boyd, I.W., Optical Materials 9 (1998) 251.Google Scholar
111 Pryde, C.A., J. Polym. Sci.: Part A: Polym. Chem., 1989, 27, pp, 711724 Google Scholar
112 Zhang, J.-Y. and Boyd, I.W., E-MRS 99 Spring Meeting (to be published Appl. Surf. Sci. 2000).Google Scholar