Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T10:39:33.781Z Has data issue: false hasContentIssue false

Osteoblast Response to Amino Acid-modified Surfaces

Published online by Cambridge University Press:  01 February 2011

Simon Todd
Affiliation:
simon.todd@postgrad.manchester.ac.uk, University of Manchester, Materials Science, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Rachel Rawsterne
Affiliation:
rachel_rawsterne@hotmail.com, University of Manchester, Materials Science, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Rein Ulijn
Affiliation:
rein.ulijn@manchester.ac.uk, University of Manchester, Materials Science, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Julie Gough
Affiliation:
julie.gough@manchester.ac.uk, University of Manchester, Materials Science, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Get access

Abstract

The behavior of cells at the material surface is of critical importance in the design of biomaterials. To understand and control cell responses to surfaces, different surface chemistries are commonly compared. In this study we exploit the chemical diversity of the 20 naturally occurring amino acids to make 20 surfaces with different chemical properties. The biological response of osteoblasts to these surfaces was examined. The osteoblast response to the surfaces was found to be dependant on the wettability of the surface with polar amino acid surfaces (Cys<Ser<Thr<Gln<Asn) promoting osteoblast spreading more than hydrophobic aromatic amino acid surfaces (Phe <Tyr <Trp), aliphatic amino acid surfaces (Leu<Ile<Val<Ala<Met<Gly), and Pro. The surface charge also affected the cellular response with positively charged amino acid surfaces (His<Arg<Lys) producing a higher percentage of spreading cells compared to the negatively charged surfaces (Asp<Glu). Amino acid surfaces provide a range of well defined chemical functionalities that are useful in studying the interactions of cells with material surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Water contact angles for charged surfaces were measured using 0.001M PBS in deionised water to maintain a constant pH.Google Scholar
1. Masters, K. S., and Anseth, K. S., Adv. Chem. Eng. 29, 742 (2004).Google Scholar
2. Sigal, G. B., Mrksich, M., and Whitesides, G. M., J. Am. Chem. Soc. 120, 34643473 (1998).Google Scholar
3. Webb, K., Hlady, V., and Tresco, P. A., J. Biomed. Mat. Res. 41 (3), 422430 (1998).Google Scholar
4. Shamberger, P. C., and Gardella, J. A., Coll. Surf. B: Biointer. 2, 209223 (1994).Google Scholar
5. Roach, P., Farrar, D., and Perry, C. C., J. Am. Chem. Soc. 127, 81688173 (2005).Google Scholar
6. Castner, D. G., and Ratner, B. D., Sur. Sci. 500, 2860 (2002).Google Scholar
7. Groth, T., Altankov, G., and Klosz, K., Biomaterials, 15, 423428 (1994).Google Scholar
8. Taborelli, M., Eng, L., Descouts, P., Ranieri, J. P., Bellamkonda, R., and Aebischer, P., J. Biomed. Mat. Res. 29, 707714 (1995).Google Scholar
9. Ruardy, T. G., Schakenraad, J. M., van der Mei, H. C., and Busscher, H. J., Sur. Sci. Rep. 29, 130 (1997).Google Scholar
10. Schakenraad, J. M., Busscher, H. J., and Wildevuur, C. R. H., Arends, J., J. Biomed. Mat. Res. 20, 773784 (1986).Google Scholar
11. van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., P Detmers, J., and van Aken, W. G., Biomaterials, 6 (6), 403–8 (1985).Google Scholar
12. Sugimoto, Y., Exp. Cell Res. 135, 3945 (1981).Google Scholar
13. Scotchford, C. A., Cooper, E., Leggett, G. J., and Downes, S., J. Biomed. Mater. Res. 41, 431442 (1998).Google Scholar
14. Keselowsky, B. G., M Collard, D., and Garcia, A. J., Proc. Natl. Acad. Sci. USA. 102 (17), 59535957 (2005).Google Scholar
15. Faucheux, N., Schweiss, R., Lutzow, K., Werner, C., and Groth, T., Biomaterials, 25, 27212730 (2004).Google Scholar
16. Stryer, L., ‘Protein Structure and Function’ in Biochemistry 3rd edition. (W. H.|Freeman and Company, New York, USA.) pp.1542.Google Scholar
17. Rawsterne, R. E., Gough, J. E., Rutten, F. J. M., Pham, N. T., Poon, W. C. K., Flitsch, S. L., Maltman, B., Alexander, M. R. and Ulijn, R. V., Surf. Interface Anal. 38, 15051511 (2006).Google Scholar
18. Maroudas, N. G., J. Theor. Biol. 49: 417424 (1975).Google Scholar
19. Frutos, A. G., Brockman, J. M., and Corn, R. M., Langmuir, 16, 21922197 (2000).Google Scholar