Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T19:42:07.605Z Has data issue: false hasContentIssue false

Non-idealities in Graphene/p-silicon Schottky-barrier Solar Cells

Published online by Cambridge University Press:  27 September 2011

Derek Y.T. Lin
Affiliation:
Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
Shabnam Shambayati
Affiliation:
Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
Nima Mohseni Kiasari
Affiliation:
Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
David L. Pulfrey
Affiliation:
Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
Peyman Servati
Affiliation:
Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
Get access

Abstract

This paper presents fabrication details and preliminary experimental results for graphene/p-silicon Schottky-barrier solar cells, where graphene is used as a transparent electrode and forms a rectifying junction with silicon wafer. Deviations from expected Schottky behavior in the form of large diode-ideality factors and s-shaped current-voltage curves observed in measurements are reported and analyzed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nelson, F.J., Kamineni, V.K., Zhang, T., Comfort, E.S., Lee, J.U., and Diebold, A.C., Appl. Phys. Lett. 97, 253110 (2010).Google Scholar
2. Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K., and Novoselov, K.S., Nano Letters 8, 1704 (2008).Google Scholar
3. Liu, H., Liu, Y., and Zhu, D., J. Mater. Chem. 21, 3335 (2011).Google Scholar
4. Jo, G., Na, S., Oh, S., Lee, S., Kim, T., Wang, G., Choe, M., Park, W., Yoon, J., Kim, D., Kahng, Y.H., and Lee, T., Appl. Phys. Lett. 97, 213301 (2010).Google Scholar
5. Hibino, H., Kageshima, H., Kotsugi, M., Maeda, F., Guo, F.-Z., and Watanabe, Y., Phys. Rev. B 79, 125437 (2009)Google Scholar
6. Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., and Wu, D., Wiley Online Library. 22, 25 pp. 27432748 (2010)Google Scholar
7. Shambayati, S., Lin, D.Y.T, Servati, P., and Pulfrey, D.L., Wocsdice, Extended Abstract, 2011.Google Scholar
8. Du, Xu, Skachko, Ivan, Barker, Anthony and Andrei, Eva Y., Nature Nanotechnology 3, 491495 (2008)Google Scholar
9. Tongay, S., Schumann, T., and Hebard, A. F., Appl. Phys. Lett. 95, 222103 (2009).Google Scholar
10. Sze, S. M. and Ng, K. K., Physics of Semiconductor Devices, 3rd ed. (Wiley New Jersey, 2007) p.136 Google Scholar
11. Pulfrey, D.L., Understanding Modern Transistors and Diodes. (Cambridge University Press, 2010) pp. 103117 Google Scholar
12. Kumar, A., Sista, S., and Yang, Y., J. Appl. Phys. 105, 094512 (2009)Google Scholar
13. Tress, W., Petrich, A., Hummert, M., Hein, M., Leo, K., and Riede, M., Appl. Phys. Lett. 98, 063301 (2011)Google Scholar
14. Wang, T.H., Iwaniczko, E., Page, M.R., Wang, Q., Xu, Y., Yan, Y., Levi, D., Roybal, L., Bauer, R., and Branz, H.M., Conf. Rec. IEEE 4th World Conf. on Photovoltaics Energy Conversion, 2, pp. 14391442 (2006)Google Scholar
15. Card, H. C. and Rhoderick, E. H., J. Phys. D: Appl. Phys. 4, 1589 (1971)Google Scholar
16. Brötzmann, M., Vetter, U., and Hofsäss, H., J. Appl. Phys. 106, 063704 (2009)Google Scholar