Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T02:36:07.206Z Has data issue: false hasContentIssue false

Nanoimprinted Glass Substrates for Nanoscale Growth Control of Transparent Conducting Oxide Films

Published online by Cambridge University Press:  31 January 2011

Yuki Sugimoto
Affiliation:
sugimoto.y.ac@m.titech.ac.jpmiracle_woody_and_wonder_boy36@yahoo.co.jp, Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Yasuyuki Akita
Affiliation:
akita.y.aa@m.titech.ac.jp, Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Yuta Nakasone
Affiliation:
nakasone.y.aa@m.titech.ac.jp, Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Masahiro Mita
Affiliation:
mita@kyodo-inc.co.jp, Kyodo International, Kawasaki, Japan
Hideo Oi
Affiliation:
hideo_oi@kyodo-inc.co.jp, Kyodo International, Kawasaki, Japan
Mamoru Yoshimoto
Affiliation:
yoshimoto.m.aa@m.titech.ac.jp, Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Get access

Abstract

The crystal growth of indium tin oxide (ITO) thin films on nanoimprinted glass substrates was examined by applying pulsed laser deposition. The nanoimprinted glass was fabricated by thermal nanoimprint using a nanostriped NiO thin film mold. The nanopatterned glass had a straight nanowire array with intervals of about 180 nm, and wire height of about 30 nm. The surface morphology of the ITO thin film grown on the nanoimprinted glass accurately reflected the morphology of the glass surface nanopattern. The ITO thin film on the imprinted glass exhibited preferentially (111)-oriented polycrystalline growth, and had 35% lower resistivity in the direction perpendicular to the nanowire array than that of the film grown on the nonpatterned commercial glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chou, S.Y. Krauss, P.R. and Renstrom, P.J. Appl. Phys. Lett. 67, 3114 (1995).Google Scholar
2 Torres, C.M. Sotomayor, Zankovych, S. Seekamp, J. Kam, A.P. C. Clavijo Cedeño, Hoffmann, T. Ahopelto, J. Reuther, F. Pfeiffer, K. Bleidiessel, G. Gruetzner, G. Maximov, M.V. Heidari, B., Mater. Sci. Eng. C 23, 23 (2003).Google Scholar
3 Trivedi, K. Bhansali, U.S. Gnade, B. Hu, W. Nanotechnology 20, 405204 (2009).Google Scholar
4 Kim, J.G. Sim, Y. Cho, Y. Seo, J.W. Kwon, S. Park, J.W. Choi, H.G. Kim, H. Lee, S. Microelectron. Eng. 86, 2427 (2009).Google Scholar
5 Zhang, Y. Lu, J. Zhou, H. Itoh, T. Maeda, R. J. Microelectromech. Syst. 17, 1020 (2008).Google Scholar
6 Chou, S.Y. and Krauss, P.R. Microelectron. Eng. 35, 237 (1997).Google Scholar
7 Guo, L.J. J. Phys. D: Appl. Phys. 37, 123 (2004).Google Scholar
8 Chou, C.Y. Krauss, P.R. Tenstrom, P.J. Science 272, 85 (1996).Google Scholar
9 Heidari, B. Maximov, I. Sarwe, E.L. Moutelius, L. J. Vac. Sci. Technol. B 17, 2961 (1999).Google Scholar
10 Hirai, Y. Kanakugi, K. Yamaguchi, T. Yao, K. Kitagawa, S. Tnaka, Y., Microelectron. Eng. 67-68, 237 (2003).Google Scholar
11 Morita, T., Watanabe, K. Kometani, R. Kanda, K. Haruyama, Y. Kaito, T. Fujita, J. Ishida, M. Tajima, T. Matsui, S. Jpn. J. Appl. Phys. 42, 3874 (2003).Google Scholar
12 Akiba, S. Hara, W. Watanabe, T. Matsuda, A. Kasahara, M. Yoshimoto, M. Appl. Surf. Sci. 253, 4512 (2007).Google Scholar
13 Akita, Y. Watanabe, T. Hara, W. Matsuda, A. Yoshimoto, M. Jpn. J. Appl. Phys. 46, 342 (2007).Google Scholar
14 Yoshimoto, M. Maeda, T. Ohnishi, T. Koinuma, H. Ishikawa, O. Shinohara, M. Kubo, M. Miura, R. Miyamoto, A. Appl. Phys. Lett. 67, 2615 (1995).Google Scholar
15 Akiba, S. Matsuda, A. Isa, H. Kasahara, M. Sato, S. Watanabe, T. Hara, W. Yoshimoto, M. Nanotechnology 17, 4053 (2006).Google Scholar
16 Ishibashi, S. Higuchi, Y. Ota, Y. Nakamura, K. J. Vac. Sci. Technol. A 8, 1399 (1990).Google Scholar
17 Kim, J.H. Jeon, K.A. Kim, G.H. Lee, S.Y. Appl. Surf. Sci 252, 4834 (2006).Google Scholar
18 Crnogorac, F. Witte, D.J. Xia, Q. Rajendran, B. Pickard, D.S. Liu, Z. Mehta, A. Sharma, S. Yasseri, A. Kamins, T.I. Chou, S.Y. Pease, R.F.W. Microelectron. Eng. 84, 891 (2007)Google Scholar