Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T03:57:45.438Z Has data issue: false hasContentIssue false

Lattice and electronic effects in rutile TiO2 containing charged oxygen defects from ab initio calculations

Published online by Cambridge University Press:  31 January 2011

Seong-Geon Park
Affiliation:
parksg1104@gmail.com, Stanford University, Stanford, United States
Blanka Magyari-Köpe
Affiliation:
blankamk@stanford.edu, Stanford University, Stanford, United States
Yoshio Nishi
Affiliation:
nishiy@stanford.edu, Stanford University, Stanford, United States
Get access

Abstract

We performed first-principle simulation for the study of oxygen vacancy defect in rutile TiO2 based on density functional theory. The effects of a vacancy on the electronic structure of rutile TiO2 were studied. Here we have employed neutral and charged oxygen vacancy in the supercell to address the resistance switching mechanism. Neutral vacancy induces the band gap states at deep level, ∼0.7 eV below the conduction band minimum, which is occupied by highly localized electrons. The calculation results of positively charged oxygen vacancy show that larger atomic relaxation surrounding oxygen vacancy results in the stretching of Ti-O bond around vacancy, thus band gap states are formed near the conduction band minimum.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, A., Haddad, S., Wu, Y.C., Lan, Z., Fang, T. N., and Kaza, S., Appl. Phys. Lett., vol. 91, pp. 123517, Sep 2007.Google Scholar
2 Kim, D. C., Seo, S., Ahn, S. E., Suh, D. S., Lee, M. J., Park, B. H., Yoo, I. K., Baek, I. G., Kim, H. J., Yim, E. K., Lee, J. E., Park, S. O., Kim, H. S., Chung, U.-In., Moon, J. T., and Ryu, B. I., Appl. Phys. Lett., vol. 88, pp. 202102, May 2006.Google Scholar
3 Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y., and Tokura, Y., Appl. Phys. Lett., vol. 86, pp. 012107, Dec 2004.Google Scholar
4 Guo, X., Schindler, C., Menzel, S., and Waser, R., Appl. Phys. Lett., vol. 91, pp. 133513, Sep 2007.Google Scholar
5 Janousch, M., Meijer, G. I.. Staub, U., Delly, B., Karg, S. F., and Andreasson, B. P., Adv. Mater., vol. 19, pp. 22322235, 2007.Google Scholar
6 Sim, H., Seong, D.-J., Chang, M., and Hwang, H., IEEE NVSMW. 21st., pp. 8889, 2006.Google Scholar
7 Ignatiev, A., Wu, N. J., Liu, S. Q., Chen, X., Nian, Y. B., Papaginanni, C., Strozier, J., and Xing, Z. W, NVMTS. 7th Annual, pp. 100103, Nov 2006.Google Scholar
8 Kresse, G., and Hafiner, J., Phys. Rev. B., vol. 47, no. 1, pp. 558561, Jan 1993.Google Scholar
9 Eror, E. G., J. Solid State Chem., vol. 38, pp. 281–87 (1981)Google Scholar
10 Janotti, A., and Walle, C. G. Van de, Appl. Phys. Lett., vol. 87, pp. 122102 (2005)Google Scholar
11 Janousch, et al., Adv. Mat. 19, 2232 (2007)Google Scholar