Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T10:16:28.078Z Has data issue: false hasContentIssue false

Efficacy of Tobramycin Conjugated to Superparamagnetic Iron Oxide Nanoparticles in Treating Cystic Fibrosis Infections

Published online by Cambridge University Press:  19 November 2013

Marek Osiński
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106-4343, U.S.A. Tel. +1 (505) 272-7812; Fax +1 (505) 272-7801; E-mail: osinski@chtm.unm.edu
Yekaterina I. Brandt
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106-4343, U.S.A. Tel. +1 (505) 272-7812; Fax +1 (505) 272-7801; E-mail: osinski@chtm.unm.edu
Leisha M. Armijo
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106-4343, U.S.A. Tel. +1 (505) 272-7812; Fax +1 (505) 272-7801; E-mail: osinski@chtm.unm.edu
Michael Kopciuch
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106-4343, U.S.A. Tel. +1 (505) 272-7812; Fax +1 (505) 272-7801; E-mail: osinski@chtm.unm.edu
Nathan. J. Withers
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106-4343, U.S.A. Tel. +1 (505) 272-7812; Fax +1 (505) 272-7801; E-mail: osinski@chtm.unm.edu
Nathaniel C. Cook
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106-4343, U.S.A. Tel. +1 (505) 272-7812; Fax +1 (505) 272-7801; E-mail: osinski@chtm.unm.edu
Natalie L. Adolphi
Affiliation:
Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, U.S.A.
Gennady A. Smolyakov
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106-4343, U.S.A. Tel. +1 (505) 272-7812; Fax +1 (505) 272-7801; E-mail: osinski@chtm.unm.edu
Hugh D. C. Smyth
Affiliation:
College of Pharmacy, University of Texas at Austin, Austin, TX 78712, U.S.A.
Get access

Abstract

Cystic fibrosis (CF) is an inherited childhood-onset life-shortening disease. It is characterized by increased respiratory production, leading to airway obstruction, chronic lung infection and inflammatory reactions. The most common bacteria causing persisting infections in people with CF is Pseudomonas aeruginosa. Superparamagnetic Fe3O4 iron oxide nanoparticles (NPs) conjugated to the antibiotic (tobramycin), guided by a gradient of the magnetic field or subjected to an oscillating magnetic field, show promise in improving the drug delivery across the mucus and P. aeruginosa biofilm to the bacteria. The question remains whether tobramycin needs to be released from the NPs after the penetration of the mucus barrier in order to act upon the pathogenic bacteria. We used a zero-length 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) crosslinking agent to couple tobramycin, via its amine groups, to the carboxyl groups on Fe3O4 NPs capped with citric acid. The therapeutic efficiency of Fe3O4 NPs attached to the drug versus that of the free drug was investigated in P. aeruginosa culture.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gibson, R. L., Burns, J. L., and Ramsey, B. W., “Pathophysiology and management of pulmonary infections in cystic fibrosis”, Am. J. Respir. Crit. Care Med. 168, 918951, 2003.Google ScholarPubMed
Cystic Fibrosis Foundation, www.cff.org, accessed on July 20, 2013.Google Scholar
Welsh, M. J., Ramsey, B. W., Accurso, F., and Cutting, G., “Cystic Fibrosis”, in The Metabolic and Molecular Basis of Inherited Diseases (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., Eds.), 8th Ed., McGraw-Hill, New York 2001, pp. 51215188.Google Scholar
Mense, M., Vergani, P., White, D. M., Altberg, G., Nairn, A. C., and Gadsby, D. C., “ In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer”, The EMBO J. 25, 47284739, 2006.CrossRefGoogle ScholarPubMed
Hodson, M. E. and Geddes, D. M., Cystic Fibrosis, Chapman and Hall Medical, London 1995.Google ScholarPubMed
Burns, J. L., Ramsey, B. W., and Smith, A. L., “Clinical manifestations and treatment of pulmonary infections in cystic fibrosis”, Adv. Pediatr. Infect. Dis. 8, 5366, 1993.Google ScholarPubMed
Hoiby, N., “Antibiotic therapy for chronic infection of Pseudomonas in the lung”, Annu. Rev. Med. 44, 110, 1993.CrossRefGoogle ScholarPubMed
Garcia-Contreras, L. and Hickey, A. J., “Aerosol treatment for cystic fibrosis”, Crit. Rev. Ther. Drug Carr. Syst. 20, 317356, 2003.Google ScholarPubMed
Voynow, J. A. and Rubin, B. K., “Mucins, mucus, and sputum”, Chest 135(2), 505512, Feb. 2009.Google ScholarPubMed
Rubin, B. K., “Mucus structure and properties in cystic fibrosis”, Paediatric Resp. Rev. 8(1), 47, March 2007.CrossRefGoogle ScholarPubMed
Matsui, H., Grubb, B. R., Tarran, R., Randell, S. H., Gatzy, J. T., Davis, C. W., and Boucher, R. C., “Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airway disease”, Cell 95(7), 10051015, 1998.CrossRefGoogle ScholarPubMed
Boucher, R. C., “New concepts of the pathogenesis of cystic fibrosis lung disease”, Eur. Respir. J. 23, 146158, 2004.CrossRefGoogle ScholarPubMed
Perez-Vilar, J. and Boucher, R. C., “Reevaluating gel-forming mucins’ roles in cystic fibrosis lung diseaseFree Rad. Bio. Med. 37, 15641577, 2004.CrossRefGoogle ScholarPubMed
Emerson, J., Rosenfeld, M., McNamara, S., Ramsey, B., and Gibson, R. L., “ Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis”, Pediatr. Pulmonol. 34, 91100, 2002.Google ScholarPubMed
Fegan, M., Francis, P., Hayward, A. C., Davis, G. H., and Fuerst, J. A., “Phenotypic conversion of Pseudomonas aeruginosa in cystic fibrosis”, J. Clin. Microbiol. 28, 11431146, 1990.Google ScholarPubMed
Costerton, J. W., Stewart, P. S., and Greenberg, E. P., “Bacterial biofilms: A common cause of persistent infections”, Science 284, 13181322, 1999.CrossRefGoogle ScholarPubMed
Singh, P. K., L Schaefer, A., Parsek, M. R., Moninger, T. O., Welsh, M. J., and Greenberg, E. P., “Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms”, Nature 407, 762764, 2000.CrossRefGoogle ScholarPubMed
Cabral, D. A., Loh, B. A., and Speert, D. P., “Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosis by human neutrophils and macrophages”, Pediatr. Res. 22, 429431, 1987.CrossRefGoogle ScholarPubMed
Pier, G. B., Coleman, F., Grout, M., Franklin, M., and Ohman, D. E., “Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis”, Infect. Immun. 69, 18951901, 2001.CrossRefGoogle ScholarPubMed
Anwar, H., Dasgupta, M., Lam, K., and Costerton, J. W., “Tobramycin resistance of mucoid Pseudomonas aeruginosa biofilm grown under iron limitation”, J. Antimicrob. Chemother. 24, 647655, 1989.CrossRefGoogle ScholarPubMed
Hodges, N. A. and Gordon, C. A., “Protection of Pseudomonas aeruginosa against ciprofloxacin and β-lactams by homologous alginate”, Antimicrob. Agents Chemother. 35, 24502452, 1991.CrossRefGoogle ScholarPubMed
Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S., and Greenberg, E. P., “Gene expression in Pseudomonas aeruginosa biofilms”, Nature 413 (6858) 860864, 25 Oct. 2001.CrossRefGoogle ScholarPubMed
Harshey, R. M., “Bacterial motility on a surface: Many ways to a common goal”, Annu. Rev. Microbiol. 57, 249273, 2003.CrossRefGoogle ScholarPubMed
Schweizer, H. P, “Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: Unanswered questions”, Genet. Mol. Res. 2, 4862, 2003.Google ScholarPubMed
Ratjen, F., Döring, G., and Nikolaizik, W. H., “Effect of inhaled tobramycin on early Pseudomonas aeruginosa colonisation in patients with cystic fibrosis”, Lancet 358, 983984, 2001.CrossRefGoogle ScholarPubMed
Griese, M., Müller, I., and Reinhardt, D., “Eradication of initial Pseudomonas aeruginosa colonization in patients with cystic fibrosis”, Eur. J. Med. Res. 7(2), 7980, 21 Feb. 2002.Google ScholarPubMed
Qiao, R. R., Yang, C. H., and Gao, M. Y., “Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications”, J. Mater. Chem. 19, 62746293, 2009.Google Scholar
Castaneda, R. T., Khurana, A., Khan, R., and Daldrup-Link, H. E., “Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle”, J. Vis. Exp. 57, Art. e3482, 4 Nov. 2011.Google Scholar
Sahoo, Y., Goodarzi, A., Swihart, M. T., Ohulchanskyy, T. Y., Kaur, N., Furlani, E. P., and Prasad, P. N., “Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control”, J. Phys. Chem. B 109, 38793885, 2005.CrossRefGoogle ScholarPubMed
Iida, H., Takayanagi, K., Nakanishi, T., and Osaka, T., “Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis”, J. Colloid. Interface Sci. 314, 274280, 2007.CrossRefGoogle ScholarPubMed
Armijo, L. M., Brandt, Y. I., Withers, N. J., Plumley, J. B., Cook, N. C., Rivera, A. C., Yadav, S., Smolyakov, G. A., Monson, T., Huber, D. L., Smyth, H. D. C., and Osiński, M., “Multifunctional superparamagnetic nanocrystals for imaging and targeted drug delivery to the lung”, Colloidal Nanocrystals for Biomedical Applications VII (Parak, W. J., Osiński, M., and Yamamoto, K., Eds.), SPIE International Symp. on Biomedical Optics BiOS 2012, San Francisco, CA, 2123 Jan. 2012, Proc. SPIE 8232, Paper 82320M (11 pp.).Google Scholar
Herman, D. J., Ferguson, P., Cheong, S., Hermans, I. F., Ruck, B. J., Allan, K. M., Prabakar, S., Spencer, J. L., Lendrum, C. D., and Tilley, R. D., “Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging”, Electr. Suppl. Material (ESI), Chem. Communic. 47, 92219223, 2011.Google ScholarPubMed
Hermanson, G. T., Bioconjugate Techniques, 2nd Ed, Academic Press 2008, p. 598.Google Scholar
Shakil, S., Khan, R., Zarrilli, R., and Khan, A. U., “Aminoglycosides versus bacteria - A description of the action, resistance mechanism, and nosocomial battleground”, J. Biomed. Sci. 15(1), 514, Jan. 2008.CrossRefGoogle ScholarPubMed
Saiman, L., “Microbiology of early CF lung disease”, Paediatr. Respir. Rev. 5 (Suppl A), S367S369, 2004.CrossRefGoogle ScholarPubMed
Le Goffic, F., Capmau, M. L., Tangy, F., and Baillarge, M., “Mechanism of action of aminoglycoside antibiotics. Binding studies of tobramycin and its 6'-n-acetyl derivative to the bacterial ribosome and its subunits”, Eur. J. Biochem. 102, 7381, 1979.CrossRefGoogle ScholarPubMed
Nikaido, H. and Hancock, R. E. W., “Outer membrane permeability of Pseudomonas aeruginosa ”, in The Bacteria: A Treatise on Structure and Function (Sokatch, J. R., Ed.), Academic Press, London 1986, pp. 145193.Google Scholar
Nikaido, H., “Nonspecific and specific permeation channels of the Pseudomonas aeruginosa outer membrane”, in Pseudomonas. Molecular Biology and Biotechnology (Galli, E., Silver, S., and Witholt, B., Eds.), Am. Soc. Microbiol., Washington, DC 1992, pp. 146154.Google Scholar
Stanier, R. Y., Palleroni, N. J., and Doudoroff, M., “The aerobic pseudomonads: A taxonomic study”, J. Gen. Microbiol. 43(2), 159271, May 1966.CrossRefGoogle ScholarPubMed
Morrow, J. B., Arango, C. P., and Holbrook, R. D., “Association of quantum dot nanoparticles with Pseudomonas aeruginosa biofilm”, J. Environ. Qual. 39, 19341941, 2010.CrossRefGoogle ScholarPubMed
McQuillan, J., Bacterial-Nanoparticle Interactions, Ph.D. Dissertation, Univ. of Exeter, UK, 2010.Google Scholar