Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T06:21:41.321Z Has data issue: false hasContentIssue false

Characterization Of Physically Vapor Deposited Af2400 Thin Films

Published online by Cambridge University Press:  16 February 2011

R. Chow
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA, 94551
M. K. Spragge
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA, 94551
G. E. Loomis
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA, 94551
F. Rainer
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA, 94551
R. L. Ward
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA, 94551
I. M. Thomas
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA, 94551
M. R. Kozlowski
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA, 94551
Get access

Abstract

Anti-reflective optical coatings made with Teflon AF2400 had the highest laser damage thresholds recorded for physical vapor deposited coatings at the Lawrence Livermore National Laboratory damage facility. Physical vapor deposited layers of Teflon AF2400, a perfluorinated amorphous polymer, Maintained the bulk optical properties of a high transmittance from 200 nm to 1200 nm, and a low refractive index. In addition, the refractive index can be intentionally reduced by control of two common deposition parameters, deposition rate and substrate temperature. Scanning electron microscopy and nuclear magnetic resonance observations indicated that morphological changes caused the variations in the refractive index rather than compositional changes. The coatings adhered to fused silica and silicon wafers under normal laboratory handling conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thomas, I. M. and Campbell, J. H. in Laser-induced damage in optical Materials: 1990, eds. Bennett, H. E., Chase, L. L., Guenther, A. H., Newnam, B. E., and Soileau, M. J., (SPIE vol. 1441, Boulder, CO, 1990) pp. 294303.CrossRefGoogle Scholar
2. Lowry, J. H., Mendlowitz, J. S., and Subramanian, N. S., Optical Engin. 31, 1982 (Sept. 1992).CrossRefGoogle Scholar
3. Yoshida, K., Ochi, K., Namikawa, N., Kotera, T., and Yuki, L. in Laser-Induced Damage of Optical Materials: 1993, eds. Bennett, H. E., Chase, L. L., Guenther, A.H., Newnam, B. E., and Soileau, M. J., (to be published by SPIE, Boulder, CO, 1993).Google Scholar
4. Nason, T.C., Moore, J. A., and Lu, T. -M., Appl. Phys. Lett. 60, 1866 (13 Apr 1992).CrossRefGoogle Scholar
5. Blanchet, G. B., Appl. Phys. Lett. 62, 479 (1 Feb. 1993).CrossRefGoogle Scholar
6. Grieser, J., Swisher, R., Phipps, J., Pelleymounter, D., and Hildreth, E. in Optical Surfaces Resistant to Severe Environments, ed. Musikant, S., (SPIE vol. 1330, San Diego, CA, 11–12 July 1990) pp.111118.CrossRefGoogle Scholar
7. Hiraoka, H. and Lazare, S., Appl. Surface Science 46, 342 (1990).CrossRefGoogle Scholar
8. Douhlert, D. H., Experimental strategies for process variables. (The Experimental Strategies Foundation, Seattle, WA, 1991).Google Scholar
9. Morgan, A. J., Rainer, F., De Marco, F. P., Gonzales, R. P., Kozlowski, M. R., and Staggs, M. C. in Laser-Induced Damage of Optical Materials: 1989. eds. Bennett, H. E., Chase, L. L., Guenther, A. H., Newnam, B.E., and Soileau, M. J., (SPIE vol. 1438, Boulder, CO, 1989) pp. 4757.Google Scholar