Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T11:52:20.649Z Has data issue: false hasContentIssue false

Why nonconventional materials are answers for sustainable agriculture

Published online by Cambridge University Press:  10 June 2019

Caue Ribeiro*
Affiliation:
Embrapa Instrumentation, São Carlos, SP 13560-970, Brazil; and Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-3): Electrochemical Process Engineering, Jülich 52425, Germany
Marcelo Carmo
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-3): Electrochemical Process Engineering, Jülich 52425, Germany
*
a)Address all correspondence to Caue Ribeiro at caue.ribeiro@embrapa.br
Get access

Abstract

The increase of agricultural production in a sustainable scenario depends on the development of new technologies to optimize the use of resources, especially fertilizers. Novel technologies in materials can provide means to the controlled release of inputs as well as to enable strategies for using poorly soluble sources.

Modern agriculture is facing a productivity challenge due to the 9 billion people demands for the next 50 years. To that, the productivity increase requests improvements in input efficiency to fill economic requirements as well as reducing their environmental impacts. Several materials can be specially designed for an adequate release of these inputs (mainly fertilizers) including ion-exchange materials, coatings and high-adsorption capacity materials. Noteworthy materials are nanoparticulate fertilizers and nanocomposites, where their size and structure are useful to control the solubilization, and consequently, the nutrient availability for plants in a synchronized way, avoiding losses to environment. Therefore, this review aims to introduce a wide view of available and in-development technologies in materials for the best management of agricultural inputs, focused in the sustainable use of fertilizers and minimal environmental impact. These different strategies offer a portfolio of possible solutions for sustainable agriculture in the next years.

Type
Review Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tilman, D., Balzer, C., Hill, J., and Befort, B.L.: Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. U. S. A. 108(50), 2026020264 (2011).CrossRefGoogle ScholarPubMed
Berndes, G., Hoogwijk, M., and van den Broek, R.: The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 25(1), 128 (2003).CrossRefGoogle Scholar
United States Department of Agriculture, Economic Research Service: Food expenditure series (2018). Available at: https://www.ers.usda.gov/data-products/food-expenditure-series/ (accessed January 07, 2018).Google Scholar
Kearney, J.: Food consumption trends and drivers. Philos. Trans. R. Soc., B 365(1554), 27932807 (2010).CrossRefGoogle ScholarPubMed
Pretty, J.: Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc., B 363(1491), 447465 (2008).CrossRefGoogle ScholarPubMed
FAO – Food and Agriculture Organization: Fertilizer use by crop in Brazil. Rome, 64 (2004).Google Scholar
Hungria, M., Campo, R.J., Souza, E.M., and Pedrosa, F.O.: Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331(1–2), 413425 (2010).CrossRefGoogle Scholar
Dobereiner, J.: Biological nitrogen fixation in the tropics: Social and economic contributions. Soil Biol. Biochem. 29(5–6), 771774 (1997).CrossRefGoogle Scholar
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., and Toulmin, C.: Food security: The challenge of feeding 9 billion people. Science 327(5967), 812818 (2010).CrossRefGoogle ScholarPubMed
Ray, D.K., Mueller, N.D., West, P.C., and Foley, J.A.: Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6) (2013).CrossRefGoogle ScholarPubMed
Glick, B.R.: Soil microbes and sustainable agriculture. Pedosphere 28(2), 167169 (2018).CrossRefGoogle Scholar
Fageria, N.K., Baligar, V.C., and Li, Y.C.: The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 31(6), 11211157 (2008).CrossRefGoogle Scholar
Zhang, X., Davidson, E.A., Mauzerall, D.L., Searchinger, T.D., Dumas, P., and Shen, Y.: Managing nitrogen for sustainable development. Nature 528(7580), 5159 (2015).CrossRefGoogle ScholarPubMed
Skiba, U., Fowler, D., and Smith, K.A.: Nitric oxide emissions from agricultural soils in temperate and tropical climates: Sources, controls and mitigation options. Nutr. Cycling Agroecosyst. 48(1–2), 139153 (1997).CrossRefGoogle Scholar
Wang, Z.H., Liu, X.J., Ju, X.T., Zhang, F.S., and Malhi, S.S.: Ammonia volatilization loss from surface-broadcast urea: Comparison of vented- and closed-chamber methods and loss in winter wheat-summer maize rotation in North China Plain. Commun. Soil Sci. Plant Anal. 35(19–20), 29172939 (2004).CrossRefGoogle Scholar
Martins, M.R., Jantalia, C.P., Polidoro, J.C., Batista, J.N., Alves, B.J.R., Boddey, R.M., and Urquiaga, S.: Nitrous oxide and ammonia emissions from N fertilization of maize crop under no-till in a Cerrado soil. Soil Tillage Res. 151, 7581 (2015).CrossRefGoogle Scholar
Pan, B.B., Lam, S.K., Mosier, A., Luo, Y.Q., and Chen, D.L.: Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric., Ecosyst. Environ. 232, 283289 (2016).CrossRefGoogle Scholar
Wang, F.L. and Alva, A.K.: Leaching of nitrogen from slow-release urea sources in sandy soils. Soil Sci. Soc. Am. J. 60(5), 14541458 (1996).CrossRefGoogle Scholar
Knox, A.S., Kaplan, D.I., and Paller, M.H.: Phosphate sources and their suitability for remediation of contaminated soils. Sci. Total Environ. 357(1–3), 271279 (2006).CrossRefGoogle ScholarPubMed
Manning, D.A.C.: Phosphate minerals, environmental pollution and sustainable agriculture. Elements 4(2), 105108 (2008).CrossRefGoogle Scholar
Chien, S.H.: Solubility assessment for fertilizer containing phosphate rock. Fert. Res. 35(1–2), 9399 (1993).CrossRefGoogle Scholar
Horst, W.J., Kamh, M., Jibrin, J.M., and Chude, V.O.: Agronomic measures for increasing P availability to crops. Plant Soil 237(2), 211223 (2001).CrossRefGoogle Scholar
Romheld, V. and Kirkby, E.A.: Research on potassium in agriculture: Needs and prospects. Plant Soil 335(1–2), 155180 (2010).CrossRefGoogle Scholar
Boswell, C.C. and Friesen, D.K.: Elemental sulfur fertilizers and their use on crops and pastures. Fert. Res. 35(1–2), 127149 (1993).CrossRefGoogle Scholar
Hansch, R. and Mendel, R.R.: Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12(3), 259266 (2009).CrossRefGoogle Scholar
McLaughlin, M.J., Parker, D.R., and Clarke, J.M.: Metals and micronutrients—Food safety issues. Field Crop. Res. 60(1–2), 143163 (1999).CrossRefGoogle Scholar
Welch, R.M.: Micronutrient nutrition of plants. Crit. Rev. Plant Sci. 14(1), 4982 (1995).CrossRefGoogle Scholar
Attoe, O.J. and Olson, R.A.: Factors affecting rate of oxidation in soils of elemental sulfur and that added in rock phosphate-sulfur fusions. Soil Sci. 101(4), 317 (1966).CrossRefGoogle Scholar
Welch, R.M. and Graham, R.D.: Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55(396), 353364 (2004).CrossRefGoogle ScholarPubMed
Chatterji, M.: Fertilizer industry—An overview. Econ. Pol. Wkly. 19(50), AS2 (1984).Google Scholar
Chien, S.H., Prochnow, L.I., and Cantarella, H.: Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. In Advances in Agronomy, Vol. 102, Sparks, D.L., ed. (Academic Press, San Diego, 2009); pp. 267322.Google Scholar
Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., and Foley, J.A.: Closing yield gaps through nutrient and water management. Nature 490(7419), 254257 (2012).CrossRefGoogle ScholarPubMed
Trenkel, M.E.: Slow and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, 2nd ed. (International Fertilizer Industry Association, Paris, 2010).Google Scholar
Allen, T.M. and Cullis, P.R.: Drug delivery systems: Entering the mainstream. Science 303(5665), 18181822 (2004).CrossRefGoogle Scholar
Brazel, C.S. and Peppas, N.A.: Modeling of drug release from swellable polymers. Eur. J. Pharm. Biopharm. 49(1), 4758 (2000).CrossRefGoogle ScholarPubMed
Korsmeyer, R.W., Gurny, R., Doelker, E., Buri, P., and Peppas, N.A.: Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 15(1), 2535 (1983).CrossRefGoogle Scholar
Korsmeyer, R.W., Lustig, S.R., and Peppas, N.A.: Solute and penetrant diffusion in swellable polymers. 1. Mathematical-modeling. J. Polym. Sci., Part B: Polym. Phys. 24(2), 395408 (1986).CrossRefGoogle Scholar
Peppas, N.A.: Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 60(4), 110111 (1985).Google ScholarPubMed
Peppas, N.A., Gurny, R., Doelker, E., and Buri, P.: Modeling of drug diffusion through swellable polymeric systems. J. Membr. Sci. 7(3), 241253 (1980).CrossRefGoogle Scholar
Brannonpeppas, L. and Peppas, N.A.: Solute and penetrant diffusion in swellable polymers. 9. The mechanisms of drug release from pH-sensitive swelling-controlled systems. J. Controlled Release 8(3), 267274 (1989).CrossRefGoogle Scholar
Peppas, N.A. and Sahlin, J.J.: A simple equation for the description of solute release. 3. Coupling of diffusion and relaxation. Int. J. Pharm. 57(2), 169172 (1989).CrossRefGoogle Scholar
Siepmann, J. and Peppas, N.A.: Higuchi equation: Derivation, applications, use and misuse. Int. J. Pharm. 418(1), 612 (2011).CrossRefGoogle ScholarPubMed
Siepmann, J. and Peppas, N.A.: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Delivery Rev. 48(2–3), 139157 (2001).CrossRefGoogle Scholar
Atkinson, C.J., Fitzgerald, J.D., and Hipps, N.A.: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 337(1–2), 118 (2010).CrossRefGoogle Scholar
Mumpton, F.A.: La roca magica: Uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. U. S. A. 96(7), 34633470 (1999).CrossRefGoogle Scholar
Bernardi, A.C.D., Oliviera, P.P.A., Monte, M.B.D., and Souza-Barros, F.: Brazilian sedimentary zeolite use in agriculture. Microporous Mesoporous Mater. 167, 1621 (2013).CrossRefGoogle Scholar
Monte, M.B.M., Middea, A., Paiva, P.R.P., Bernardi, A.C.C., Rezende, N., Baptista, M., Silva, M.G., Vargas, H., Amorim, H.S., and de Souza-Barros, F.: Nutrient release by a Brazilian sedimentary zeolite. An. Acad. Bras. Cienc. 81(4), 641653 (2009).CrossRefGoogle Scholar
Malekian, R., Abedi-Koupai, J., and Eslamian, S.S.: Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater. 185(2–3), 970976 (2011).CrossRefGoogle ScholarPubMed
Bernardi, A.C.D., Werneck, C.G., Haim, P.G., Rezende, N., Piva, P.R.P., and Monte, M.: Growth and mineral nutrition of Rangpur Lime rootstock cultivated in substrate with zeolite enriched with NPK. Rev. Bras. Frutic. 30(3), 794800 (2008).CrossRefGoogle Scholar
Eroglu, N., Emekci, M., and Athanassiou, C.G.: Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 97(11), 34873499 (2017).CrossRefGoogle ScholarPubMed
Werneck, C.G., Breda, F.A., Zonta, E., Lima, E., Polidoro, J.C., Balieiro, F.D., and Bernardi, A.C.D.: Ammonia volatilization from urea with natural zeolite. Pesqui. Agropecu. Bras. 47(3), 466470 (2012).CrossRefGoogle Scholar
Bernardi, A.C.C., Mota, E.P., Cardosa, R.D., Monte, M.B.M., and Oliveira, P.P.A.: Ammonia volatilization from soil, dry-matter yield, and nitrogen levels of Italian ryegrass. Commun. Soil Sci. Plant Anal. 45(2), 153162 (2014).CrossRefGoogle Scholar
Campana, M., Alves, A.C., De Oliveira, P.P.A., Bernardi, A.C.D., Santos, E.A., Herling, V.R., De Morais, J.P.G., and Barioni, W.: Ammonia volatilization from exposed soil and Tanzania grass pasture fertilized with urea and zeolite mixture. Commun. Soil Sci. Plant Anal. 46(8), 10241033 (2015).CrossRefGoogle Scholar
Bernardi, A.C.D., Werneck, C.G., Haim, P.G., Monte, M.B.D., Barros, F.D., and Verruma-Bernardi, M.R.: Nitrogen, potassium, and nitrate concentrations of lettuce grown in a substrate with KNO3-enriched zeolite. Commun. Soil Sci. Plant Anal. 46(7), 819826 (2015).CrossRefGoogle Scholar
Bernardi, A.C.D., Monte, M.B.D., Paiva, P.R.P., Werneck, C.G., Haim, P.G., and Barros, F.D.: Dry matter production and nutrient accumulation after successive crops of lettuce, tomato, rice, and andropogon-grass in a substrate with zeolite. Rev. Bras. Cienc. Solo 34(2), 435442 (2010).CrossRefGoogle Scholar
Bernardi, A.C.D., De Souza, G.B., Polidoro, J.C., Paiva, P.R.P., and Monte, M.: Yield, quality components, and nitrogen levels of silage corn fertilized with urea and zeolite. Commun. Soil Sci. Plant Anal. 42(11), 12661275 (2011).CrossRefGoogle Scholar
Rashidzadeh, A., Olad, A., and Reyhanitabar, A.: Hydrogel/clinoptilolite nanocomposite-coated fertilizer: Swelling, water-retention and slow-release fertilizer properties. Polym. Bull. 72(10), 26672684 (2015).CrossRefGoogle Scholar
Paskovic, I., Bronic, J., Subotic, B., Pecina, M., Perica, S., Palcic, I., and Custic, M.H.: Impact of synthetic zeolite fertilization on radicchio mineral composition and nutritive value. J. Food, Agric. Environ. 11(1), 498502 (2013).Google Scholar
Park, M., Kim, J.S., Choi, C.L., Kim, J.E., Heo, N.H., Komarneni, S., and Choi, J.: Characteristics of nitrogen release from synthetic zeolite Na-P1 occluding NH4NO3. J. Controlled Release 106(1–2), 4450 (2005).CrossRefGoogle ScholarPubMed
Paskovic, I., Pecina, M., Bronic, J., Perica, S., Ban, D., Ban, S.G., Poscic, F., Palcic, I., and Custic, M.H.: Synthetic zeolite a as zinc and manganese fertilizer in calcareous soil. Commun. Soil Sci. Plant Anal. 49(9), 10721082 (2018).CrossRefGoogle Scholar
Chen, L., Chen, X.L., Zhou, C.H., Yang, H.M., Ji, S.F., Tong, D.S., Zhong, Z.K., Yu, W.H., and Chu, M.Q.: Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. J. Cleaner Prod. 156, 648659 (2017).CrossRefGoogle Scholar
Borges, R., Dutra, L.M., Barison, A., and Wypych, F.: MAS NMR and EPR study of structural changes in talc and montmorillonite induced by grinding. Clay Miner. 51(1), 6980 (2016).CrossRefGoogle Scholar
Borges, R., Prevot, V., Forano, C., and Wypych, F.: Design and kinetic study of sustainable potential slow-release fertilizer obtained by mechanochemical activation of clay minerals and potassium monohydrogen phosphate. Ind. Eng. Chem. Res. 56(3), 708716 (2017).CrossRefGoogle Scholar
Bhardwaj, D., Sharma, M., Sharma, P., and Tomar, R.: Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. J. Hazard. Mater. 227, 292300 (2012).CrossRefGoogle ScholarPubMed
Borges, R., Brunatto, S.F., Leitao, A.A., de Carvalho, G.S.G., and Wypych, F.: Solid-state mechanochemical activation of clay minerals and soluble phosphate mixtures to obtain slow-release fertilizers. Clay Miner. 50(2), 153162 (2015).CrossRefGoogle Scholar
Gardolinski, J.E., Wypych, F., and Cantao, M.P.: Exfoliation and hydration of kaolinite after intercalation with urea. Quim. Nova 24(6), 761767 (2001).Google Scholar
Fukamachi, C.R.B., Wypych, F., and Mangrich, A.S.: Use of Fe3+ ion probe to study the stability of urea-intercalated kaolinite by electron paramagnetic resonance. J. Colloid Interface Sci. 313(2), 537541 (2007).CrossRefGoogle Scholar
Nicolini, K.P., Fukamachi, C.R.B., Wypych, F., and Mangrich, A.S.: Dehydrated halloysite intercalated mechanochemically with urea: Thermal behavior and structural aspects. J. Colloid Interface Sci. 338(2), 474479 (2009).CrossRefGoogle ScholarPubMed
Borges, R. and Wypych, F.: Potential slow release fertilizers and acid soil conditioners obtained by one-pot mechanochemical activation of chrysotile:cement roofing sheets with K2HPO4. J. Braz. Chem. Soc. 30(2), 326332 (2019).Google Scholar
Borges, R., Baika, L.M., Grassi, M.T., and Wypych, F.: Mechanochemical conversion of chrysotile/K2HPO4 mixtures into potential sustainable and environmentally friendly slow-release fertilizers. J. Environ. Manage. 206, 962970 (2018).CrossRefGoogle ScholarPubMed
Park, M., Kim, C.Y., Lee, D.H., Choi, C.L., Choi, J., Lee, S.R., and Choy, J.H.: Intercalation of magnesium–urea complex into swelling clay. J. Phys. Chem. Solids 65(2–3), 409412 (2004).CrossRefGoogle Scholar
Benicio, L.P.F., Constantino, V.R.L., Pinto, F.G., Vergutz, L., Tronto, J., and da Costa, L.M.: Layered double hydroxides: New technology in phosphate fertilizers based on nanostructured materials. ACS Sustainable Chem. Eng. 5(1), 399409 (2017).CrossRefGoogle Scholar
Das, J., Patra, B.S., Baliarsingh, N., and Parida, K.M.: Adsorption of phosphate by layered double hydroxides in aqueous solutions. Appl. Clay Sci. 32(3–4), 252260 (2006).CrossRefGoogle Scholar
Everaert, M., Warrinnier, R., Baken, S., Gustafsson, J.P., De Vos, D., and Smolders, E., Phosphate-exchanged Mg–Al layered double hydroxides: A new slow release phosphate fertilizer. ACS Sustainable Chem. Eng. 4(8), 42804287 (2016).CrossRefGoogle Scholar
Bernardo, M.P. and Ribeiro, C.: Mg–Al-LDH and Zn–Al-LDH as matrices for removal of high loadings of phosphate. Mater. Res. 21(3), e20171001 (2018).CrossRefGoogle Scholar
Bernardo, M.P., Moreira, F.K.V., and Ribeiro, C.: Synthesis and characterization of eco-friendly Ca–Al-LDH loaded with phosphate for agricultural applications. Appl. Clay Sci. 137, 143150 (2017).CrossRefGoogle Scholar
Bernardo, M.P., Moreira, F.K.V., Colnago, L.A., and Ribeiro, C.: Physico-chemical assessment of Mg–Al–PO4-LDHs obtained by structural reconstruction in high concentration of phosphate. Colloids Surf., A 497, 5362 (2016).CrossRefGoogle Scholar
Bernardo, M.P., Guimaraes, G.G.F., Majaron, V.F., and Ribeiro, C.: Controlled release of phosphate from layered double hydroxide structures: Dynamics in soil and application as Smart fertilizer. ACS Sustainable Chem. Eng. 6(4), 51525161 (2018).CrossRefGoogle Scholar
Shaviv, A., Raban, S., and Zaidel, E.: Modeling controlled nutrient release from polymer coated fertilizers: Diffusion release from single granules. Environ. Sci. Technol. 37(10), 22512256 (2003).CrossRefGoogle ScholarPubMed
Hyatt, C.R., Venterea, R.T., Rosen, C.J., McNearney, M., Wilson, M.L., and Dolan, M.S.: Polymer-coated urea maintains potato yields and reduces nitrous oxide emissions in a Minnesota loamy sand. Soil Sci. Soc. Am. J. 74(2), 419428 (2010).CrossRefGoogle Scholar
Jarosiewicz, A. and Tomaszewska, M.: Controlled-release NPK fertilizer encapsulated by polymeric membranes. J. Agric. Food Chem. 51(2), 413417 (2003).CrossRefGoogle ScholarPubMed
Zhang, L., Zhang, G.L., Lu, J.J., and Liang, H.: Preparation and characterization of carboxymethyl cellulose/polyvinyl alcohol blend film as a potential coating material. Polym.-Plast. Technol. Eng. 52(2), 163167 (2013).CrossRefGoogle Scholar
Qiao, D.L., Liu, H.S., Yu, L., Bao, X.Y., Simon, G.P., Petinakis, E., and Chen, L.: Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 147, 146154 (2016).CrossRefGoogle ScholarPubMed
Wu, L. and Liu, M.Z.: Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr. Polym. 72(2), 240247 (2008).CrossRefGoogle Scholar
Costa, M.M.E., Cabral-Albuquerque, E.C.M., Alves, T.L.M., Pinto, J.C., and Fialho, R.L.: Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules. J. Agric. Food Chem. 61(42), 99849991 (2013).CrossRefGoogle ScholarPubMed
Nampoothiri, K.M., Nair, N.R., and John, R.P.: An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101(22), 84938501 (2010).CrossRefGoogle Scholar
Tomaszewska, M. and Jarosiewicz, A.: Use of polysulfone in controlled-release NPK fertilizer formulations. J. Agric. Food Chem. 50(16), 46344639 (2002).CrossRefGoogle ScholarPubMed
Bortoletto-Santos, R., Ribeiro, C., and Polito, W.L.: Controlled release of nitrogen-source fertilizers by natural-oil-based poly(urethane) coatings: The kinetic aspects of urea release. J. Appl. Polym. Sci. 133(33) (2016).CrossRefGoogle Scholar
da Cruz, D.F., Bortoletto-Santos, R., Guimaraes, G.G.F., Polito, W.L., and Ribeiro, C.: Role of polymeric coating on the phosphate availability as a fertilizer: Insight from phosphate release by castor polyurethane coatings. J. Agric. Food Chem. 65(29), 58905895 (2017).CrossRefGoogle ScholarPubMed
Ni, B.L., Liu, M.Z., Lu, S.Y., Xie, L.H., and Wang, Y.F.: Multifunctional slow-release organic–inorganic compound fertilizer. J. Agric. Food Chem. 58(23), 1237312378 (2010).CrossRefGoogle ScholarPubMed
Ni, B.L., Liu, M.Z., Lu, S.Y., Xie, L.H., and Wang, Y.F.: Environmentally friendly slow-release nitrogen fertilizer. J. Agric. Food Chem. 59(18), 1016910175 (2011).CrossRefGoogle ScholarPubMed
Guan, Y., Song, C., Gan, Y.T., and Li, F.M.: Increased maize yield using slow-release attapulgite-coated fertilizers. Agron. Sustainable Dev. 34(3), 657665 (2014).CrossRefGoogle Scholar
Cox, D. and Addiscott, T.M.: Sulfur-coated urea as a fertilizer for potatoes. J. Sci. Food Agric. 27(11), 10151020 (1976).CrossRefGoogle Scholar
Bortoletto-Santos, R., Plotegher, F., Roncato, V., Majaron, R.F., Majaron, V.F., Polito, W.L., and Ribeiro, C.: Strategy for multinutrient application in integrated granules using zein as a coating layer. J. Agric. Food Chem. 66(37), 95829587 (2018).CrossRefGoogle ScholarPubMed
Kralovec, R.D. and Morgan, W.A.: Urea-formaldehyde fertilizers, condensation products of urea and formaldehyde as fertilizer with controlled nitrogen availability. J. Agric. Food Chem. 2(2), 9295 (1954).CrossRefGoogle Scholar
Owen, O., Winsor, G.W., and Long, M.I.E.: The properties of some urea-formaldehyde materials in relation to their possible use as nitrogenous fertilizers. J. Sci. Food Agric. 3(11), 531541 (1952).CrossRefGoogle Scholar
Hagin, J. and Cohen, L.: Nitrogen-fertilizer potential of an experimental urea formaldehyde. Agron. J. 68(3), 518520 (1976).CrossRefGoogle Scholar
Tjia, B. and Sheehan, T.J.: Effect of urea formaldehyde slow release fertilizers on growth and leaf pigmentation of euphorbia-pulcherrima-willd. Hortscience 12(4), 383 (1977).Google Scholar
Jada, S.S.: The structure of urea-formaldehyde resins. J. Appl. Polym. Sci. 35(6), 15731592 (1988).CrossRefGoogle Scholar
Jahns, T., Ewen, H., and Kaltwasser, H.: Biodegradability of urea-aldehyde condensation products. J. Polym. Environ. 11(4), 155159 (2003).CrossRefGoogle Scholar
Christjanson, P., Siimer, K., Pehk, T., and Lasn, I.: Structural changes in urea-formaldehyde resins during storage. Holz Roh- Werkst. 60(6), 379384 (2002).CrossRefGoogle Scholar
Giroto, A.S., Guimares, G.G.F., and Ribeiro, C.: A novel, simple route to produce urea:urea-formaldehyde composites for controlled release of fertilizers. J. Polym. Environ. 26(6), 24482458 (2018).CrossRefGoogle Scholar
Aouada, F.A., Mattoso, L.H.C., and Longo, E.: Enhanced bulk and superficial hydrophobicities of starch-based bionanocomposites by addition of clay. Ind. Crops Prod. 50, 449455 (2013).CrossRefGoogle Scholar
Pereira, E.I., Minussi, F.B., da Cruz, C.C.T., Bernardi, A.C.C., and Ribeiro, C.: Urea montmorillonite-extruded nanocomposites: A novel slow-release material. J. Agric. Food Chem. 60(21), 52675272 (2012).CrossRefGoogle ScholarPubMed
Pereira, E.I., da Cruz, C.C.T., Solomon, A., Le, A., Cavigelli, M.A., and Ribeiro, C.: Novel slow-release nanocomposite nitrogen fertilizers: The impact of polymers on nanocomposite properties and function. Ind. Eng. Chem. Res. 54(14), 37173725 (2015).CrossRefGoogle Scholar
Skiba, U., Fowler, D., and Smith, K.A.: Nitric oxide emissions from agricultural soils in temperate and tropical climates: Sources, controls and mitigation options. Nutr. Cycling Agroecosyst. 48(1–2), 139153 (1997).CrossRefGoogle Scholar
Freney, J.R.: Emission of nitrous oxide from soils used for agriculture. Nutr. Cycling Agroecosyst. 49(1–3), 16 (1997).CrossRefGoogle Scholar
Yamamoto, C.F., Pereira, E.I., Mattoso, L.H.C., Matsunaka, T., and Ribeiro, C.: Slow release fertilizers based on urea/urea-formaldehyde polymer nanocomposites. Chem. Eng. J. 287, 390397 (2016).CrossRefGoogle Scholar
Pereira, E.I., Nogueira, A.R.A., Cruz, C.C.T., Guimaraes, G.G.F., Foschin, M.M., Bernardi, A.C.C., and Ribeiro, C.: Controlled urea release employing nanocomposites increases the efficiency of nitrogen use by forage. ACS Sustainable Chem. Eng. 5(11), 999310001 (2017).CrossRefGoogle Scholar
Guilherme, M.R., Aouada, F.A., Fajardo, A.R., Martins, A.F., Paulino, A.T., Davi, M.F.T., Rubira, A.F., and Muniz, E.C.: Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J. 72, 365385 (2015).CrossRefGoogle Scholar
Wang, Y.F., Liu, M.Z., Ni, B.L., and Xie, L.H.: Kappa-carrageenan-sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Ind. Eng. Chem. Res. 51(3), 14131422 (2012).CrossRefGoogle Scholar
El Salmawi, K.M.: Application of polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) hydrogel produced by conventional crosslinking or by freezing and thawing. J. Macromol. Sci., Part A: Pure Appl.Chem. 44(4–6), 619624 (2007).CrossRefGoogle Scholar
Aouada, F.A., de Moura, M.R., da Silva, W.T.L., Muniz, E.C., and Mattoso, L.H.C.: Preparation and characterization of hydrophilic, spectroscopic, and kinetic properties of hydrogels based on polyacrylamide and methylcellulose polysaccharide. J. Appl. Polym. Sci. 120(5), 30043013 (2011).CrossRefGoogle Scholar
Aouada, F.A., Chiou, B.S., Orts, W.J., and Mattoso, L.H.C.: Physicochemical and morphological properties of poly(acrylamide) and methylcellulose hydrogels: Effects of monomer, crosslinker and polysaccharide compositions. Polym. Eng. Sci. 49(12), 24672474 (2009).CrossRefGoogle Scholar
Aouada, F.A., de Moura, M.R., Menezes, E.D., Nogueira, A.R.D., and Mattoso, L.H.C.: Hydrogel synthesis and kinetics of ammonium and potassium release. Rev. Bras. Cienc. Solo 32(4), 16431649 (2008).CrossRefGoogle Scholar
Bortolin, A., Aouada, F.A., de Moura, M.R., Ribeiro, C., Longo, E., and Mattoso, L.H.C.: Application of polysaccharide hydrogels in adsorption and controlled-extended release of fertilizers processes. J. Appl. Polym. Sci. 123(4), 22912298 (2012).CrossRefGoogle Scholar
Ni, B.L., Liu, M.Z., and Lu, S.Y.: Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chem. Eng. J. 155(3), 892898 (2009).CrossRefGoogle Scholar
Junior, C.R.F., de Moura, M.R., and Aouada, F.A.: Synthesis and characterization of intercalated nanocomposites based on poly(methacrylic acid) hydrogel and nanoclay cloisite-Na+ for possible application in agriculture. J. Nanosci. Nanotechnol. 17(8), 58785883 (2017).CrossRefGoogle Scholar
Bortolin, A., Aouada, F.A., Mattoso, L.H.C., and Ribeiro, C.: Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: Evidence of synergistic effects for the slow release of fertilizers. J. Agric. Food Chem. 61(31), 74317439 (2013).CrossRefGoogle ScholarPubMed
Bortolin, A., Serafim, A.R., Aouada, F.A., Mattoso, L.H.C., and Ribeiro, C.: Macro- and micronutrient simultaneous slow release from highly swellable nanocomposite hydrogels. J. Agric. Food Chem. 64(16), 31333140 (2016).CrossRefGoogle ScholarPubMed
Atkins, P. and De Paula, J.: Physical Chemistry, 8th ed. (LTC Ed., São Paulo, 2008); p. 592.Google Scholar
Enüstün, B.V. and Turkevich, J.: Solubility of fine particles of strontium sulfate. J. Am. Chem. Soc. 82, 45034509 (1960).CrossRefGoogle Scholar
Kipp, J.E.: The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 284, 109122 (2004).CrossRefGoogle ScholarPubMed
Tonsuaadu, K., Kaljuvee, T., Petkova, V., Traksmaa, R., Bender, V., and Kirsimae, K.: Impact of mechanical activation on physical and chemical properties of phosphorite concentrates. Int. J. Miner. Process. 100, 104109 (2011).CrossRefGoogle Scholar
Yusupov, T., Shumskaya, L., Kirillova, E., and Boldyrev, V.: Reactivity of mechanically activated apatite and its interaction with zeolites. J. Min. Sci. 42, 189194 (2006).CrossRefGoogle Scholar
Zhang, H., Li, S., and Yan, Y.: Dissolution behavior of hydroxyapatite powder in hydrothermal solution. Ceram. Int. 27, 451454 (2001).CrossRefGoogle Scholar
Fathi, M.H. and Hanifi, A.: Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method. Mater. Lett. 61, 39783983 (2007).CrossRefGoogle Scholar
Loo, S.C.J., Siew, Y.E., Ho, S., Boey, F.Y.C., and Ma, J.: Synthesis and hydrothermal treatment of nanostructured hydroxyapatite of controllable sizes. J. Mater. Sci.: Mater. Med. 19, 13891397 (2008).Google ScholarPubMed
de Oliveira, M.A.R., Paris, E.C., and Ribeiro, C.: Study of potential use of hydroxyapatite for soil fertilization. Quim. Nova 36(6), 790792 (2013).Google Scholar
Kah, M., Kookana, R.S., Gogos, A., and Bucheli, T.D.: A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13(8), 677684 (2018).CrossRefGoogle ScholarPubMed
Montalvo, D., McLaughlin, M.J., and Degryse, F.: Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in andisols and oxisols. Soil Sci. Soc. Am. J. 79(2), 551558 (2015).CrossRefGoogle Scholar
Plotegher, F. and Ribeiro, C.: Characterization of single superphosphate powders—A study of milling effects on solubilization kinetics. Mater. Res. 19(1), 98105 (2016).CrossRefGoogle Scholar
Giroto, A.S., Fidelis, S.C., and Ribeiro, C.: Controlled release from hydroxyapatite nanoparticles incorporated into biodegradable, soluble host matrixes. RSC Adv. 5(126), 104179104186 (2015).CrossRefGoogle Scholar
Giroto, A.S., Guimaraes, G.G.F., Foschini, M., and Ribeiro, C.: Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci. Rep. 7, 46032 (2017).CrossRefGoogle ScholarPubMed
Jitendra, M., Jai, P., and Kumar, A.N.: Role of beneficial soil microbes in sustainable agriculture and environmental management. Clim. Change Environ. Sustain. 4(2), 137149 (2016).Google Scholar
Chuang, C.C., Kuo, Y.L., Chao, C.C., and Chao, W.L.: Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol. Fertil. Soils 43(5), 575584 (2007).CrossRefGoogle Scholar
Mendes, G.D., da Silva, N., Anastacio, T.C., Vassilev, N.B., Ribeiro, J.I., da Silva, I.R., and Costa, M.D.: Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer. Microb. Biotechnol. 8(6), 930939 (2015).CrossRefGoogle Scholar
Mendes, G.D., de Freitas, A.L.M., Pereira, O.L., da Silva, I.R., Vassilev, N.B., and Costa, M.D.: Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann. Microbiol. 64(1), 239249 (2014).CrossRefGoogle Scholar
Klaic, R., Plotegher, F., Ribeiro, C., Zangirolami, T.C., and Farinas, C.S.: A novel combined mechanical-biological approach to improve rock phosphate solubilization. Int. J. Miner. Process. 161, 5058 (2017).CrossRefGoogle Scholar
Klaic, R., Plotegher, F., Ribeiro, C., Zangirolami, T.C., and Farinas, C.S.: A fed-batch strategy integrated with mechanical activation improves the solubilization of phosphate rock by Aspergillus niger. ACS Sustainable Chem. Eng. 6(9), 1132611334 (2018).CrossRefGoogle Scholar
Klaic, R., Giroto, A.S., Guimaraes, G.G.F., Plotegher, F., Ribeiro, C., Zangirolami, T.C., and Farinas, C.S.: Nanocomposite of starch-phosphate rock bioactivated for environmentally-friendly fertilization. Miner. Eng. 128, 230237 (2018).CrossRefGoogle Scholar
Baltrusaitis, J., Sviklas, A.M., and Galeckiene, J.: Liquid and solid compound granulated diurea sulfate-based fertilizers for sustainable sulfur source. ACS Sustainable Chem. Eng. 2(10), 24772487 (2014).CrossRefGoogle Scholar
Evans, J., McDonald, L., and Price, A.: Application of reactive phosphate rock and sulphur fertilisers to enhance the availability of soil phosphate in organic farming. Nutr. Cycling Agroecosyst. 75(1–3), 233246 (2006).CrossRefGoogle Scholar
Degryse, F., Ajiboye, B., Baird, R., da Silva, R.C., and McLaughlin, M.J.: Availability of fertiliser sulphate and elemental sulphur to canola in two consecutive crops. Plant Soil 398(1–2), 313325 (2016).CrossRefGoogle Scholar
Karamanos, R.E. and Janzen, H.H.: Crop response to elemental sulfur fertilizers in central Alberta. Can. J. Soil Sci. 71(2), 213225 (1991).CrossRefGoogle Scholar
Degryse, F., Ajiboye, B., Baird, R., da Silva, R.C., and McLaughlin, M.J.: Oxidation of elemental sulfur in granular fertilizers depends on the soil-exposed surface area. Soil Sci. Soc. Am. J. 80(2), 294305 (2016).CrossRefGoogle Scholar
Li, X.S., Sato, T., Ooiwa, Y., Kusumi, A., Gu, J.D., and Katayama, Y.: Oxidation of elemental sulfur by Fusarium solani strain THIF01 harboring endobacterium Bradyrhizobium sp. Microb. Ecol. 60(1), 96104 (2010).CrossRefGoogle ScholarPubMed
Wen, G., Schoenau, J.J., Yamamoto, T., and Inoue, M.: A model of oxidation of an elemental sulfur fertilizer in soils. Soil Sci. 166(9), 607613 (2001).CrossRefGoogle Scholar
Grayston, S.J., Nevell, W., and Wainwright, M.: Sulfur oxidation by fungi. Trans. Br. Mycol. Soc. 87, 193198 (1986).CrossRefGoogle Scholar
Guimaraes, G.G.F., Klaic, R., Giroto, A.S., Majaron, V.F., Avansi, W., Farinas, C.S., and Ribeiro, C.: Smart fertilization based on sulfur-phosphate composites: Synergy among materials in a structure with multiple fertilization roles. ACS Sustainable Chem. Eng. 6(9), 1218712196 (2018).CrossRefGoogle Scholar
Zegada-Lizarazu, W., Matteucci, D., and Monti, A.: Critical review on energy balance of agricultural systems. Biofuels, Bioprod. Biorefin. 4, 423446 (2010).CrossRefGoogle Scholar
Smith, A.M. and Gilbertson, L.M.: Rational ligand design to improve agrochemical delivery efficiency and advance agriculture sustainability. ACS Sustainable Chem. Eng. 6(11), 1359913610 (2018).CrossRefGoogle Scholar
Monnerat, R.G., Nachtigal, G.D., Cruz, I., Bettiol, W., and Campo, C.B.H.: The role of Embrapa in the development of tools to control biological pests: A case of success. In Bacillus Thuringiensis and Lysinibacillus Sphaericus, Fiuza, L.M., Polanczyk, R.A., and Crickmore, N., eds. (Springer International Publishing, 2017); pp. 213222.CrossRefGoogle Scholar
Jiang, Y.J., Zhou, H., Chen, L.J., Yuan, Y., Fang, H., Luan, L., Chen, Y., Wang, X.Y., Liu, M.Q., Li, H.X., Peng, X.H., and Sun, B.: Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates. Front. Microbiol. 9, 2803 (2018).CrossRefGoogle ScholarPubMed
Mitter, N., Worrall, E.A., Robinson, K.E., Li, P., Jain, R.G., Taochy, C., Fletcher, S.J., Carroll, B.J., Lu, G.Q., and Xu, Z.P.: Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).CrossRefGoogle ScholarPubMed