Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T11:41:37.213Z Has data issue: false hasContentIssue false

From highly graphitic to amorphous carbon dots: A critical review

Published online by Cambridge University Press:  01 July 2014

Antonios Kelarakis*
Affiliation:
Centre for Materials Science, School of Forensic and Investigative Sciences, University of Central Lancashire, Preston PR12HE, United Kingdom
*
Address all correspondence to Antonios Kelarakis at akelarakis@uclan.ac.uk
Get access

Abstract

Graphitic and amorphous C-dots share common characteristics in their photoluminescence behavior. However, the graphitic dots have a lead as electrocatalyst for fuel cells, sensitizers, and electron acceptors for solar cells.

The emergence of carbogenic nanoparticles (C-dots) as a new class of photoluminescent (PL) nanoemitters is directly related to their economical preparation, nontoxic nature, versatility, and tunability. C-dots are typically prepared by pyrolytic or oxidative treatment of suitable precursors. While the surface functionalities critically affect the dispersibility and the emission intensity of C-dots in a given environment, it is the nature of the carbogenic core that actually imparts certain intrinsic properties. Depending on the synthetic approach and the starting materials, the structure of the carbogenic core can vary from highly graphitic all the way to completely amorphous. This critical review focuses on correlating the functions of C-dots with the graphitic or amorphous nature of their carbogenic cores. The systematic classification on that basis can provide insights on the origins of their intriguing photophysical behavior and can contribute in realizing their full potential in challenging applications.

Type
Review
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Xu, X., Ray, R., Gu, Y., Ploehn, H.J., Gearheart, L., Raker, K., and Scrivens, W.A.: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736 (2004).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).Google Scholar
Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).CrossRefGoogle Scholar
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).Google Scholar
Baker, S.N. and Baker, G.A.: Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 49, 6726 (2010).Google Scholar
da Silva, J.C.G.E. and Goncalves, H.M.R.: Analytical and bioanalytical applications of carbon dots. Trends Anal. Chem. 30, 1327 (2011).Google Scholar
Li, H., Kang, Z., Liu, Y., and Lee, S-T.: Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 22, 24230 (2012).Google Scholar
Shen, J., Zhu, Y., Yang, X., and Li, C.: Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686 (2012).Google Scholar
Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., and Zhu, J-J.: Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 5, 4015 (2013).Google Scholar
Luo, P.G., Sahu, S., Yang, S-T., Sonkar, S.K., Wang, J., Wang, H., LeCroy, G.E., Cao, L., and Sun, Y-P.: Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. B 1, 2116 (2013).Google Scholar
Zhang, Z., Zhang, J., Chen, N., and Qu, L.: Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869 (2012).Google Scholar
Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., and Geim, A.K.: Chaotic Dirac billiard in graphene quantum dots. Science 320, 356 (2008).CrossRefGoogle ScholarPubMed
Yongqiang, D., Hongchang, P., Shuyan, R., Congqiang, C., Yuwu, C., and Ting, Y.: Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon 64, 245 (2013).Google Scholar
Gokus, T., Nair, R.R., Bonetti, A., Böhmler, M., Lombardo, A., Novoselov, K.S., Geim, A.K., Ferrari, A.C., and Hartschuh, A.: Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963 (2009).CrossRefGoogle ScholarPubMed
Lu, J., Yeo, P.S.E., Gan, C.K., Wu, P., and Loh, K.P.: Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol. 6, 247 (2011).Google Scholar
Yan, X., Cui, X., and Li, L.: Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 132, 5944 (2010).Google Scholar
Yan, X., Cui, X., Li, B., and Li, L-S.: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 1869 (2010).Google Scholar
Sadhanala, H.K., Khateia, J., and Nanda, K.K.: Facile hydrothermal synthesis of carbon nanoparticles and possible application as white light phosphors and catalysts for the reduction of nitrophenol. RSC Adv. 4, 1148111485 (2014).Google Scholar
Sun, Y-P., Zhou, B., Lin, Y., Wang, W., Fernando, K.A.S., Pathak, P., Meziani, M.J., Harruff, B.A., Wang, X., Wang, H., Luo, P.G., Yang, H., Kose, M.E., Chen, B., Veca, L.M., and Xie, S-Y.: Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756 (2006).Google Scholar
Peng, J., Gao, W., Gupta, B.K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L. B., Zhan, X., Gao, G., Vithayathil, S. A., Kaipparettu, B.A., Marti, A.A., Hayashi, T., Zhu, J-J., and Ajayan, P.M.: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844 (2012).Google Scholar
Lin, L. and Zhan, S.: Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 48, 10177 (2012).Google Scholar
Pan, D., Zhang, J., Li, Z., and Wu, M.: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734 (2010).CrossRefGoogle ScholarPubMed
Zhou, J.G., Booker, C., Li, R., Zhou, X., Sham, T-K., Sun, X., and Ding, Z.: An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744 (2007).Google Scholar
Zheng, L., Chi, Y., Dong, Y., Lin, J., and Wang, B.: Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 131, 4564 (2009).Google Scholar
Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Tsang, C.H.A., Yang, X., and Lee, S-T.: Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430 (2010).CrossRefGoogle ScholarPubMed
Yu, X., Liu, R., Zhang, G., and Cao, H.: Carbon quantum dots as novel sensitizers for photoelectrochemical solar hydrogen generation and their size-dependent effect. Nanotechnology 24, 335401 (2013).Google Scholar
Ming, H., Ma, Z., Liu, Y., Pan, K.M., Yu, H., Wang, F., and Kang, Z.H.: Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 41, 9526 (2012).CrossRefGoogle ScholarPubMed
Lu, J., Yang, J., Wang, J., Lim, A., Wang, S., and Loh, K.P.: One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 23672375 (2009).Google Scholar
Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y., and Qu, L.: An electrochemical venue to green luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776 (2011).Google Scholar
Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Lau, C.N., de Heer, W.A., Conrad, E.H., and Haddon, R.C.: Spectroscopy of covalently functionalized graphene. Nano Lett. 10, 4061 (2010).CrossRefGoogle ScholarPubMed
Li, H., He, X., Liu, Y., Yu, H., Kang, Z., and Lee, S-T.: Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater. Res. Bull. 46, 147 (2011).CrossRefGoogle Scholar
Peng, H. and Travas-Sejdic, J.: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21, 5563 (2009).Google Scholar
Zhou, L., He, B., and Huang, J.: Amphibious fluorescent carbon dots: One-step green synthesis and application for light-emitting polymer nanocomposites. Chem. Commun. 49, 8078 (2013).Google Scholar
Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri, A.M., Al-Youbi, A.O., and Sun, X.: Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 24, 2037 (2012).CrossRefGoogle Scholar
Liang, Q., Ma, W., Shi, Y., Li, Z., and Yang, X.: Easy synthesis of highly fluorescent carbon quantum dots from gelatine and their luminescent properties and applications. Carbon 60, 421 (2013).CrossRefGoogle Scholar
Sahu, S., Behera, B., Maiti, T.K., and Mohapatra, S.: Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 48, 8835 (2012).Google Scholar
Zhu, C., Zhai, J., and Dong, S.: Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. 48, 9367 (2012).Google Scholar
Huang, H., Lv, J-J., Zhou, D-L., Bao, N., Xu, Y., Wang, A-J., and Feng, J-J.: One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv. 3, 21691 (2013).Google Scholar
Zhang, Z., Hao, J., Zhang, J., Zhang, B., and Tang, J.: Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route. RSC Adv. 2, 8599 (2012).CrossRefGoogle Scholar
Gu, J., Wang, W., Zhang, Q., Meng, Z., Jia, X., and Xi, K.: Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis. RSC Adv. 3, 15589 (2013).Google Scholar
Wang, Q., Huang, X., Long, Y., Wang, X., Zhang, H., Zhu, R., Liang, L., Teng, P., and Zheng, H.: Hollow luminescent carbon dots for drug delivery. Carbon 61, 640 (2013).Google Scholar
Liu, R., Wu, D., Liu, S., Koynov, K., Knoll, W., and Li, Q.: An aqueous route to multicolor photoluminescent carbon dots, using silica spheres as carriers. Angew. Chem. Int. Ed. 48, 4598 (2009).CrossRefGoogle ScholarPubMed
Hsu, P-C., Shih, Z-Y., Lee, C-H., and Chang, H-T.: Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem. 14, 917 (2012).Google Scholar
Krysmann, M.J., Kelarakis, A., and Giannelis, E.P.: Photoluminescent carbogenic nanoparticles directly derived from crude biomass. Green Chem. 14, 3141 (2012).Google Scholar
Wang, J., Wang, C-F., and Chen, S.: Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process and multicolor printing patterns. Angew. Chem. Int. Ed. 51, 9297 (2012).Google Scholar
Wang, J., Sahu, S., Sonkar, S.K., Tackett, K.N. II, Sun, K.W., Liu, Y, Maimaiti, H., Anilkumar, P., and Sun, Y-P.: Versatility with carbon dots – From overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Adv. 3, 15604 (2013).Google Scholar
Tan, M., Zhang, L., Tang, R., Song, X., Li, Y., Wu, H., Wang, Y., Lv, G., Liu, W., and Maa, X.: Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta 115, 950 (2013).Google Scholar
Jaiswal, A., Ghosh, S.S., and Chattopadhyay, A.: One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem. Commun. 48, 407 (2012).Google Scholar
Bourlinos, A.B., Stassinopoulos, A., Anglos, D., Zboril, R., Karakassides, M., and Giannelis, E.P.: Surface functionalized carbogenic quantum dots. Small 4, 455 (2008).Google Scholar
Kelarakis, A., Yoon, K., Sics, I., Somani, R.H., Hsiao, B.S., and Chu, B.: Uniaxial deformation of an elastomer nanocomposite containing modified carbon nanofibers by in-situ synchrotron x-ray diffraction. Polymer 46, 5103 (2005).Google Scholar
Zheng, H., Wang, Q., Long, Y., Zhang, H., Huang, X., and Zhu, R.: Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 47, 10650 (2011).Google Scholar
Qian, Z., Ma, J., Shan, X., Shao, L., Zhou, J., Chen, J., and Feng, H.: Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation. RSC Adv. 3, 14571 (2013).Google Scholar
Sun, Y.P., Wang, X., Lu, F.S., Cao, L., Meziani, M.J., Luo, P.J.G., Gu, L.R., and Veca, L.M.: Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J. Phys. Chem. C 112, 18295 (2008).Google Scholar
Qu, K., Wang, J., Ren, J., and Qu, X.: Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem. Eur. J. 19, 7243 (2013).Google Scholar
Bourlinos, A.B., Karakassides, M.A., Kouloumpis, A., Gournis, D., Bakandritsos, A., Papagiannouli, I., Aloukos, P., Couris, S., Hola, K., Zboril, R., Krysmann, M., and Giannelis, E.P.: Synthesis, characterization and non-linear optical response of organophilic carbon dots. Carbon 61, 640 (2013).CrossRefGoogle Scholar
Shen, L., Zhang, L., Chen, M., Chen, X., and Wang, J.: The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon 55, 343 (2013).Google Scholar
Krysmann, M.J., Kelarakis, A., Dallas, P., and Giannelis, E.P.: Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134, 747 (2012).Google Scholar
Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Sun, H., Wang, H., and Yang, B.: Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52, 3953 (2013).Google Scholar
Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F., and Yang, X.: Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 5118 (2009).Google Scholar
Wang, F., Xie, Z., Zhang, H., Liu, C., and Zhang, Y.: Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 21, 1027 (2011).Google Scholar
Mirtchev, P., Henderson, E.J., Soheilnia, N., Yipc, C.M., and Ozin, G.A.: Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 22, 1265 (2012).Google Scholar
Hu, S-L., Niu, K-Y., Sun, J., Yang, J., Zhao, N-Q., and Du, X-W.: One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19, 484 (2009).Google Scholar
Li, Y., Zhao, Y., Cheng, H., Hu, Y., Shi, G., Dai, L., and Qu, L.: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15 (2012).Google Scholar
Sun, D., Ban, R., Zhang, P-H., Wu, G-H., Zhang, J-R., and Zhu, J-J.: Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 4, 424 (2013).Google Scholar
Dong, Y., Pang, H., Yang, H.B., Guo, C., Shao, J., Chi, Y., Ming Li, C., and Yu, T.: Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. 125, 7954 (2013).Google Scholar
Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., Tan, H., Zhao, Z., Xie, Z., and Sun, Z.: Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5, 12272 (2013).Google Scholar
Li, F., Liu, C., Yang, J., Wang, Z., Liu, W., and Tian, F.: Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging. RSC Adv. 4, 3201 (2014).Google Scholar
Srivastava, S., Awasthi, R., Tripathi, D., Rai, M.K., Agarwal, V., Agrawal, V., Gajbhiye, N.S., and Gupta, R.K.: Magnetic-nanoparticle-doped carbogenic nanocomposite: An effective magnetic resonance/fluorescence multimodal imaging probe. Small 8, 1099 (2012).CrossRefGoogle ScholarPubMed
Bourlinos, A.B., Bakandritsos, A., Kouloumpis, A., Gournis, D., Krysmann, M., Giannelis, E.P., Polakova, K., Safarova, K., Holaf, K., and Zboril, R.: Gd(III)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 22, 23327 (2012).Google Scholar
Jahan, S., Mansoor, F., Naz, S., Lei, J., and Kanwal, S.: Oxidative synthesis of highly fluorescent Boron/Nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye. Anal. Chem. 85, 10232 (2013).Google Scholar
Eda, G., Lin, Y-Y., Mattevi, C., Yamaguchi, H., Chen, H-A., Chen, I-S., Chen, C-W., and Chhowalla, M.: Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505 (2010).Google Scholar
Chien, C-T., Li, S-S., Lai, W-J., Yeh, Y-C., Chen, H-A., Chen, I-S., Chen, L-C., Chen, K-H., Nemoto, T., Isoda, S., Chen, M., Fujita, T., Eda, G., Yamaguchi, H., Chhowalla, M., and Chen, C-W.: Tunable photoluminescence from graphite oxide. Angew. Chem. Int. Ed. 51, 6662 (2012).Google Scholar
Cao, L., Meziani, M.J., Sahu, S., and Sun, Y.P.: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171 (2013).Google Scholar
Li, H., He, X., Liu, Y., Huang, H., Lian, S., Lee, S-T., and Kang, Z.: One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49, 605 (2011).Google Scholar
Haase, M. and Schafer, H.: Upconverting nanoparticles. Angew. Chem. Int. Ed., 50, 5808 (2011).Google Scholar
Cao, L., Wang, X., Meziani, M.J., Lu, F., Wang, H., Luo, P.G., Lin, Y., Harruff, B.A., Veca, L.M., Murray, D., Xie, S-Y., and Sun, Y-P.: Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129, 11318 (2007).CrossRefGoogle ScholarPubMed
Yang, S-T., Cao, L., Luo, P.G., Lu, F., Wang, X., Wang, H., Meziani, M.J., Liu, Y., Qi, G., and Sun, Y-P.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308 (2009).Google Scholar
Ding, H., Cheng, L-W., Ma, Y-Y., Kong, J-L., and Xiong, H-M.: Luminescent carbon quantum dots and their application in cell imaging. New J. Chem. 37, 2515.CrossRefGoogle Scholar
Zhang, Y-Y., Wu, M., Wang, Y-Q., He, X-W., Li, W-Y., and Feng, X-Z.: A new hydrothermal refluxing route to strong fluorescent carbon dots and its application as fluorescent imaging agent. Talanta 117, 196 (2013).CrossRefGoogle ScholarPubMed
Zhao, Q-L., Zhang, Z-L., Huang, B-H., Peng, J., Zhang, M., and Pang, D-W.: Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 5116 (2008).CrossRefGoogle ScholarPubMed
Nurunnabi, M., Khatun, Z., Huh, K.M., Park, S.Y., Lee, D.Y., Cho, K.J., and Lee, Y.: In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7, 6858 (2013).CrossRefGoogle ScholarPubMed
Yang, S-T., Wang, X., Wang, H., Lu, F., Luo, P.G., Cao, L., Meziani, M.J., Liu, J-H., Liu, Y., Chen, M., Huang, Y., and Sun, Y-P.: Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 113, 18110 (2009).Google Scholar
Nakajima, K., Okamura, M., Kondo, J.N., Domen, K., Tatsumi, T., Hayashi, S., and Hara, M.: Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chem. Mater. 21, 186 (2009).Google Scholar
Liu, Y., Chen, J., Yao, J., Lu, Y., Zhang, L., and Liu, X.: Preparation and properties of sulfonated carbon–silica composites from sucrose dispersed on MCM-48. Chem. Eng. J. 148, 201 (2009).Google Scholar
Van de Vyver, S., Peng, L., Geboers, J., Schepers, H., de Clippel, F., Gommes, C.J., Goderis, B., Jacobs, P.A., and Sels, B.F.: Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem. 12, 1560 (2010).Google Scholar
Cao, L., Sahu, S., Anilkumar, P., Bunker, C.E., Xu, J., Shiral Fernando, K.A., Wang, P., Guliants, E.A., Tackett, K.N., and Sun, Y-P.: Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J. Am. Chem. Soc. 133, 4754 (2011).Google Scholar
Han, X., Han, Y., Huang, H., Zhang, H., Zhang, X., Liu, R., Liu, Y., and Kang, Z.: Synthesis of carbon quantum dots/SiO2 porous nanocomposites and their catalytic ability for photo-enhanced hydrocarbon selective oxidation. Dalton Trans. 42, 10380 (2013).CrossRefGoogle ScholarPubMed
Zhang, H.C., Ming, H., Lian, S., Huang, H., Li, H., Zhang, L., Liu, Y., Kang, Z., and Lee, S.T.: Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Trans. 40, 10822 (2011).Google Scholar
Yu, H., Zhang, H.C., Li, H.T., Huang, H., Liu, Y., Ming, H., and Kang, Z.H.: ZnO/carbon quantum dots nanocomposites: One-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J. Chem. 36, 1031 (2012).CrossRefGoogle Scholar
Strelko, V.V., Kuts, V.S., and Thrower, P.A.: On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon 38, 1499 (2000).Google Scholar
Shen, J., Zhu, Y., Yang, X., Zong, J., Zhang, J., and Li, C.: One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 36, 97 (2012).Google Scholar
Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj, R., and Chand, S.: Luminescent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 9960 (2011).Google Scholar
Huang, J.J., Zhong, Z.F., Rong, M.Z., Zhou, X., Chen, X.D., and Zhang, M.Q.: An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon 70, 190 (2014).Google Scholar
Cheng, S-H., Weng, T-M., Lu, M-L., Tan, W-C., Chen, J-Y., and Chen, Y-F.: All carbon-based photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 3, 2694 (2014).Google Scholar