Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T09:42:19.145Z Has data issue: false hasContentIssue false

Engineering mesoporous silica for superior optical and thermal properties

Published online by Cambridge University Press:  16 November 2020

Danielle M. Butts
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
Patricia E. McNeil
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
Michal Marszewski
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
Esther Lan
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
Tiphaine Galy
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
Man Li
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
Joon Sang Kang
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
David Ashby
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
Sophia King
Affiliation:
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA90095, USA
Sarah H. Tolbert
Affiliation:
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California90095, USA; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California90095, USA; The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA90095, USA
Yongjie Hu
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
Laurent Pilon
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
Bruce S. Dunn*
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA90095, USA
*
Address all correspondence to Bruce S. Dunn at bdunn@ucla.edu
Get access

Abstract

We report a significant advance in thermally insulating transparent materials: silica-based monoliths with controlled porosity which exhibit the transparency of windows in combination with a thermal conductivity comparable to aerogels.

The lack of transparent, thermally insulating windows leads to substantial heat loss in commercial and residential buildings, which accounts for ~4.2% of primary US energy consumption annually. The present study provides a potential solution to this problem by demonstrating that ambiently dried silica aerogel monoliths, i.e., ambigels, can simultaneously achieve high optical transparency and low thermal conductivity without supercritical drying. A combination of tetraethoxysilane, methyltriethoxysilane, and post-gelation surface modification precursors were used to synthesize ambiently dried materials with varying pore fractions and pore sizes. By controlling the synthesis and processing conditions, 0.5–3 mm thick mesoporous monoliths with transmittance >95% and a thermal conductivity of 0.04 W/(m K) were produced. A narrow pore size distribution, <15 nm, led to the excellent transparency and low haze, while porosity in excess of 80% resulted in low thermal conductivity. A thermal transport model considering fractal dimension and phonon-boundary scattering is proposed to explain the low effective thermal conductivity measured. This work offers new insights into the design of transparent, energy saving windows.

Type
Original Research Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apte, J. and Arasteh, D.: Window-related energy consumption in the US residential and commercial building stock. LBNL-60146, pp. 1–38 (2008).Google Scholar
Arasteh, D., Selkowitz, S., Apte, J., and LaFrance, M.: Zero energy windows. In 2006 ACEEE Summer Study on Energy Efficiency in Buildings, pp. 1–14 (2006).Google Scholar
U.S. Energy Information Administration, Office of Energy Consumption and Efficiency Statistics. 2015 Residential Energy Consumption Survey (2015).Google Scholar
Kamiuto, K., Miyamoto, T., and Saitoh, S.: Thermal characteristics of a solar tank with aerogel surface insulation. Appl. Energy 62, 113123 (1999).CrossRefGoogle Scholar
Buratti, C., Moretti, E., and Zinzi, M.: High energy-efficient windows with silica aerogel for building refurbishment: Experimental characterization and preliminary simulations in different climate conditions. Buildings 7, 112 (2017).CrossRefGoogle Scholar
Weinstein, L.A., McEnaney, K., Strobach, E., Yang, S., Bhatia, B., Zhao, L., Huang, Y., Loomis, J., Cao, F., Boriskina, S.V., Ren, Z., Wang, E.N., and Chen, G.: A hybrid electric and thermal solar receiver. Joule 2, 962975 (2018).CrossRefGoogle Scholar
Strobach, E., Bhatia, B., Yang, S., Zhao, L., and Wang, E.N.: High temperature annealing for structural optimization of silica aerogels in solar thermal applications. J. Non-Cryst. Solids 462, 7277 (2017).CrossRefGoogle Scholar
Zhao, L., Bhatia, B., Yang, S., Strobach, E., Weinstein, L.A., Cooper, T.A., Chen, G., and Wang, E.N.: Harnessing heat beyond 200°C from unconcentrated sunlight with nonevacuated transparent aerogels. ACS Nano 13, 75087516 (2019).CrossRefGoogle ScholarPubMed
Baetens, R., Jelle, B.P., and Gustavsen, A.: Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 43, 761769 (2011).CrossRefGoogle Scholar
Jelle, B.P.: Traditional, state-of-the-art and future thermal building insulation materials and solutions – properties, requirements and possibilities. Energy Build. 43, 25492563 (2011).CrossRefGoogle Scholar
Aditya, L., Mahlia, T.M.I., Rismanchi, B., Ng, H.M., Hasan, M.H., Metselaar, H.S.C., Muraza, O., and Aditiya, H.B.: A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 73, 13521365 (2017).CrossRefGoogle Scholar
Lemmon, E.W. and Jacobsen, R.T.: Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25, 2169 (2004).CrossRefGoogle Scholar
Fricke, J. and Emmerling, A.: Scaling properties and structure of aerogels. J. Sol.-Gel. Sci. Technol. 8, 781788 (1997).Google Scholar
Courtens, E. and Vacher, R.: Experiments on the structure and vibrations of fractal solids. Proc. R. Soc. Math. Phys. Eng. Sci. 423, 5569 (1989).Google Scholar
Schaefer, D.W.: Fractal models and the structure of materials. MRS Bull. 13, 2227 (1988).CrossRefGoogle Scholar
Pfeifer, P. and Avnir, D.: Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 79, 35583565 (1983).CrossRefGoogle Scholar
Jaroniec, M.: Evaluation of the fractal dimension from a single adsorption isotherm. Langmuir 11, 23162317 (1995).CrossRefGoogle Scholar
Vacher, R., Courtens, E., Coddens, G., Pelous, J., and Woignier, T.: Neutron-spectroscopy measurement of a fracton density of states. Phys. Rev. B 39, 73847387 (1989).CrossRefGoogle ScholarPubMed
Stoll, E. and Courtens, E.: Connectivity and the fracton dimension of percolation clusters. Z. Für. Phys. B Condens. Matter 81, 12 (1990).CrossRefGoogle Scholar
Petri, A. and Pietronero, L.: Multifractal nature of fractons on a percolating cluster. Phys. Rev. B 45, 1286412872 (1992).CrossRefGoogle ScholarPubMed
Alexander, S. and Orbach, R.: Density of states on fractals: “Fractons”. J. Phys. Lett. 43, 625631 (1982).CrossRefGoogle Scholar
Alexander, S., Laermans, C., Orbach, R., and Rosenberg, H.M.: Fracton interpretation of vibrational properties of cross-linked polymers, glasses, and irradiated quartz. Phys. Rev. B 28, 46154619 (1983).CrossRefGoogle Scholar
Kruk, M. and Jaroniec, M.: Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem. Mater. 13, 31693183 (2001).CrossRefGoogle Scholar
Scheuerpflug, P., Morper, H.-J., and Neubert, G.: Low-temperature thermal transport in silica aerogels. J. Phys. Appl. Phys. 24, 13951403 (1991).CrossRefGoogle Scholar
Aegerter, M.A., Leventis, N., and Koebel, M.A.: Aerogels Handbook, Advances in Sol-Gel Derived Materials and Technologies (Springer, 2011), New York.Google Scholar
Zhao, L., Strobach, E., Bhatia, B., Yang, S., Leroy, A., Zhang, L., and Wang, E.N.: Theoretical and experimental investigation of haze in transparent aerogels. Opt. Express 27, A39A50 (2019).CrossRefGoogle ScholarPubMed
Mandal, C., Donthula, S., Far, H.M., Saeed, A.M., Sotiriou-Leventis, C., and Leventis, N.: Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. J. Sol-Gel Sci. Technol. 92, 84100 (2019).CrossRefGoogle Scholar
Nakanishi, Y., Hara, Y., Sakuma, W., Saito, T., Nakanishi, K., and Kanamori, K.: Colorless transparent melamine–formaldehyde aerogels for thermal insulation. ACS Appl. Nano Mater. 3, 4954 (2020).CrossRefGoogle Scholar
Zu, G., Kanamori, K., Wang, X., Nakanishi, K., and Shen, J.: Superelastic triple-network polyorganosiloxane-based aerogels as transparent thermal superinsulators and efficient separators. Chem. Mater. 32, 15951604 (2020).CrossRefGoogle Scholar
Strobach, E., Bhatia, B., Yang, S., Zhao, L., and Wang, E.N.: High temperature stability of transparent silica aerogels for solar thermal applications. APL Mater. 7, 081104 (2019).CrossRefGoogle Scholar
Marszewski, M., King, S.C., Yan, Y., Galy, T., Li, M., Dashti, A., Butts, D.M., Kang, J.S., McNeil, P.E., Lan, E., Dunn, B., Hu, Y., Tolbert, S.H., and Pilon, L.: Thick transparent nanoparticle-based mesoporous silica monolithic slabs for thermally insulating window materials. ACS Appl. Nano Mater. 2, 45474555 (2019).CrossRefGoogle Scholar
Schramm, R.E., Clark, A.F., and Reed, R.P.: A Compilation and Evaluation of Mechanical, Thermal, and Electrical Properties of Selected Polymers. (U.S. National Bureau of Standards, 1973), Washington, D.C.CrossRefGoogle Scholar
Caps, R. and Fricke, J.: Aerogels for thermal insulation. In Sol-Gel Technologies for Glass Producers and Users, Aegerter, M. A. and Mennig, M., eds. (Springer, 2004), Boston, MA; pp. 349353.CrossRefGoogle Scholar
Harreld, J.H., Dong, W., and Dunn, B.: Ambient pressure synthesis of aerogel-like vanadium oxide and molybdenum oxide. Mater. Res. Bull. 33, 561567 (1998).CrossRefGoogle Scholar
Rolison, D.R. and Dunn, B.: Electrically conductive oxide aerogels: New materials in electrochemistry. J. Mater. Chem. 11, 963980 (2001).CrossRefGoogle Scholar
Dong, W.: Electrochemical properties of high surface area vanadium oxide aerogels. Electrochem. Solid-State Lett. 3, 457 (1999).CrossRefGoogle Scholar
Orcel, G. and Hench, L.: Effect of formamide additive on the chemistry of silica sol-gels. J. Non-Cryst. Solids 79, 177194 (1986).CrossRefGoogle Scholar
Levy, D. and Zayat, M.: The Sol-Gel Handbook (Wiley-VCH Verlag GmbH & Co. KGaA, 2015), Weinheim, Germany.CrossRefGoogle Scholar
Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, 1990), Boston.Google Scholar
Lenza, R.F.S. and Vasconcelos, W.L.: Preparation of silica by sol-gel method using formamide. Mater. Res. 4, 189194 (2001).CrossRefGoogle Scholar
Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57, 603619 (1985).CrossRefGoogle Scholar
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 10511069 (2015).CrossRefGoogle Scholar
Pisal, A.A. and Venkateswara Rao, A.: Development of hydrophobic and optically transparent monolithic silica aerogels for window panel applications. J. Porous Mater. 24, 685695 (2017).CrossRefGoogle Scholar
Wei, T.-Y., Lu, S.-Y., and Chang, Y.-C.: Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities. J. Phys. Chem. B 112, 1188111886 (2008).CrossRefGoogle ScholarPubMed
Wei, T.-Y., Chang, T.-F., Lu, S.-Y., and Chang, Y.-C.: Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying. J. Am. Ceram. Soc. 90, 20032007 (2007).CrossRefGoogle Scholar
Rubio, F., Rubio, J., and Oteo, J.L.: A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc. Lett. 31, 199219 (1998).CrossRefGoogle Scholar
Al-Oweini, R., and El-Rassy, H.: Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct. 919, 140145 (2009).CrossRefGoogle Scholar
Prakash, S.S., Brinker, C.J., Hurd, A.J., and Rao, S.M.: Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374, 439443 (1995).CrossRefGoogle Scholar
Berardi, U.: The development of a monolithic aerogel glazed window for an energy retrofitting project. Appl. Energy 154, 603615 (2015).CrossRefGoogle Scholar
Fricke, J., Lu, X., Wang, P., Büttner, D., and Heinemann, U.: Optimization of monolithic silica aerogel insulants. Int. J. Heat Mass Transfer 35, 23052309 (1992).CrossRefGoogle Scholar
Jain, A., Rogojevic, S., Ponoth, S., Gill, W.N., Plawsky, J.L., Simonyi, E., Chen, S.-T., and Ho, P.S.: Processing dependent thermal conductivity of nanoporous silica xerogel films. J. Appl. Phys. 91, 32753281 (2002).CrossRefGoogle Scholar
Ebert, H.-P.: Thermal properties of aerogels. In Aerogels Handbook, Aegerter, Michel A., Leventis, Nicholas and Koebel, Matthias M., eds. (Springer, 2011) New York.Google Scholar
Touloukian, Y.S.: Thermal Conductivity: Nonmetallic Solids, Thermophysical Properties of Matter, Vol. 2, (IFI/Plenum, 1970), New York.CrossRefGoogle Scholar
Ziman, J.M.: Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Classic Texts in the Physical Sciences, Clarendon Press, Oxford University Press, 2001), Oxford, New York.CrossRefGoogle Scholar
Scheuerpflug, P., Hauck, M., and Fricke, J.: Thermal properties of silica aerogels between 1.4 and 330 K. J. Non-Cryst. Solids 145, 196201 (1992).CrossRefGoogle Scholar
Heinemann, U.: Wärmetransport in Semitransparenten Nichtgrauen Medien Am Beispiel von SiO2-Aerogelen (University of Würzburg, 1993), Würzburg, Germany.Google Scholar
Harreld, J.H., Ebina, T., Tsubo, N., and Stucky, G.: Manipulation of pore size distributions in silica and ormosil gels dried under ambient pressure conditions. J. Non-Cryst. Solids 298, 241251 (2002).CrossRefGoogle Scholar
Kargar, F., Ramirez, S., Debnath, B., Malekpour, H., Lake, R.K., and Balandin, A.A.: Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. Appl. Phys. Lett. 107, 171904 (2015).CrossRefGoogle Scholar
Romano, G., and Grossman, J.C.: Phonon bottleneck identification in disordered nanoporous materials. Phys. Rev. B 96 (2017).CrossRefGoogle Scholar
Supplementary material: File

Butts et al. supplementary material

Butts et al. supplementary material

Download Butts et al. supplementary material(File)
File 248.7 KB