Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T06:32:00.697Z Has data issue: false hasContentIssue false

En route toward sustainable organic electronics

Published online by Cambridge University Press:  24 April 2020

Alexandra Zvezdin
Affiliation:
Polytechnique Montreal, Engineering Physics, Montreal, Quebec H3T1J4, Canada
Eduardo Di Mauro
Affiliation:
Polytechnique Montreal, Engineering Physics, Montreal, Quebec H3T1J4, Canada
Denis Rho
Affiliation:
Aquatic and Crop Resource Development, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
Clara Santato*
Affiliation:
Polytechnique Montreal, Engineering Physics, Montreal, Quebec H3T1J4, Canada
Mohamed Khalil
Affiliation:
Polytechnique Montreal, Engineering Physics, Montreal, Quebec H3T1J4, Canada; and Pyrocycle, Campus Polytechnique Montreal, Quebec H3T1J4, Canada
*
a)Address all correspondence toClara Santato at clara.santato@polymtl.ca
Get access

Abstract

Consumer electronics have caused an unsustainable amount of waste electrical and electronic equipment (WEEE). Organic electronics, by means of eco-design, represent an opportunity to manufacture compostable electronic devices.

Waste electrical and electronic equipment (WEEE), or e-waste, is defined as the waste of any device that uses a power source and that has reached its end of life. Disposing of WEEE at landfill sites has been identified as an inefficient solid waste processing strategy as well as a threat to human health and the environment. In the effort to mitigate the problem, practices such as (i) designing products for durability, reparability, and safe recycling, and (ii) promoting closed-loop systems based on systematic collection and reuse/refurbishment have been identified. In this perspective, we introduce a complementary route to making electronics more sustainable: organic electronics based on biodegradable materials and devices. Biodegradable organic electronics lie at the intersection of research in chemistry, materials science, device engineering, bioelectronics, microbiology, and toxicology. The design of organic electronics for standardized biodegradability will allow composting to be an end-of-life option.

Type
Perspective
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldé, C.P., Forti, V., Gray, V., Kuehr, R., and Stegmann, P.: The Global E-waste Monitor - 2017, United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/ViennaGoogle Scholar
World Economic Forum: A New Circular Vision for Electronics: Time for a Global Reboot (World Economic Forum, Geneva, 2019).Google Scholar
Awasthi, A.K., Li, J., Koh, L., and Ogunseitan, O.A.: Circular economy and electronic waste. Nat. Electron. 2(3), 8689 (2019).CrossRefGoogle Scholar
Elements in Danger. Available at: https://www.rsc.org/new-perspectives/sustainability/elements-in-danger/ (accessed March 29, 2020).Google Scholar
Meloni, M., Souchet, F., and Sturges, D.: Circular Consumer Electronics: An Initial Exploration (Ellen MacArthur Foundation, United Kingdom, 2018).Google Scholar
Children’s Environmental Health. Electronic Waste, World Health Organization. Available at: https://www.who.int/ceh/risks/ewaste/en/ (accessed March 29, 2020).Google Scholar
Perkins, D.N., Brune Drisse, M.N., Nxele, T., and Sly, P.D.: E-waste: A global hazard. Ann. Glob. Heal. 80(4), 286295 (2014).CrossRefGoogle ScholarPubMed
Odeyingbo, O., Nnorom, I., and Deubzer, O.: Person in the Port Project: Assessing Import of Used Electrical and Electronic Equipment into Nigeria. UNU-ViE SCYCLE, Bonn, Germany, and BCCC Africa, 2017.Google Scholar
Lee, D., Offenhuber, D., Duarte, F., Biderman, A., and Ratti, C.: Monitour: Tracking global routes of electronic waste. Waste Manag. 72, 362370 (2018).CrossRefGoogle ScholarPubMed
Davies, E.: Endangered elements—Critical thinking. Chem. World (January), 5054 (2011).Google Scholar
Hammerschmidt, C.: BMW leads project for sustainable cobalt mining. EE News PowerManagement. Available at: https://www.eenewspower.com/news/bmw-leads-project-sustainable-cobalt-mining (accessed March 29, 2020).Google Scholar
Fang, S., Tao, T., Cao, H., He, M., Zeng, X., Ning, P., Zhao, H., Wu, M., Zhang, Y., and Sun, Z.: Comprehensive characterization on Ga (In)-bearing dust generated from semiconductor industry for effective recovery of critical metals. Waste Manag. 89, 212223 (2019).CrossRefGoogle Scholar
Irimia-Vladu, M.: Green’ electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43(2), 588610 (2014).CrossRefGoogle Scholar
University of St Andrews Communications Office, Chemical elements which make up mobile phones placed on ‘endangered list’. Available at: https://news.st-andrews.ac.uk/archive/chemical-elements-which-make-up-mobile-phones-placed-on-endangered-list (accessed March 29, 2020).Google Scholar
Babbitt, C., Althaf, S., Ryen, E., and Chen, R.: Sustainable Materials Management for the Evolving Consumer Technology Ecosystem. Rochester, NY, 2018. Available at: https://www.rit.edu/gis/ssil/docs/CTA-SSIL%20Final%20Report%20SMM%20Phase%202%202018.pdf (accessed March 29, 2020).Google Scholar
Heeger, A.J.: Semiconducting and metallic polymers: The fourth generation of polymeric materials (nobel lecture). Angew. Chem. Int. Ed. 40(14), 25912611 (2001).3.0.CO;2-0>CrossRefGoogle Scholar
Root, S.E., Savagatrup, S., Printz, A.D., Rodriquez, D., and Lipomi, D.J.: Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 117(9), 64676499 (2017).CrossRefGoogle ScholarPubMed
Berggren, M. and Malliaras, G.G.: How conducting polymer electrodes operate. Science 364(6437), 233234 (2019).Google ScholarPubMed
Irimia-Vladu, M., Kanbur, Y., Camaioni, F., Coppola, M., Yumusak, C., Irimia, C., Vlad, A., Operamolla, A., Farinola, G., Suranna, G., Gonzalez-Benitez, N., Molina, M., Bautista, L., Langhals, H., Stadlober, B., Glowacki, E., and Sariciftci, N.: On the stability of selected hydrogen-bonded semiconductors in organic electronic devices. Chem. Mater. 31(17), 63156346 (2019).CrossRefGoogle ScholarPubMed
Baumgartner, M., Coppola, M.E., Sariciftci, N.S., Glowacki, E.D., Bauer, S., and Irimia-Vladu, M.: Emerging ‘green’ materials and technologies for electronics. In Green Materials for Electronics, Irimia-Vladu, M., Glowacki, E.D., Sariciftci, N.S., and Bauer, S., eds. 154 (Wiley, Weinheim, Germany, 2017).Google Scholar
Nzihou, A., ed.: Handbook on Characterization of Biomass, Biowaste and Related By-Products (Springer, 2020).CrossRefGoogle Scholar
Xu, R., Gouda, A., Caso, M.F., Soavi, F., and Santato, C.: Melanin: A greener route to enhance energy storage under solar light. ACS Omega 4(7), 1224412251 (2019).CrossRefGoogle ScholarPubMed
Wünsche, J., Deng, Y., Kumar, P., Di Mauro, E., Josberger, E., Sayago, J., Pezzella, A., Soavi, F., Cicoira, F., Rolandi, M., and Santato, C.: Protonic and electronic transport in hydrated thin films of the pigment eumelanin. Chem. Mater. 27(2), 436442 (2014).CrossRefGoogle Scholar
Phan, S. and Luscombe, C.K.: Recent advances in the green, sustainable synthesis of semiconducting polymers. Trends Chem, Cham, Switzerland. 1(7), 670681 (2019).CrossRefGoogle Scholar
Design Systems Holistically & Using Life Cycle Thinking (American Chemical Society). Available at: https://www.acs.org/content/acs/en/greenchemistry/principles/design-system-holistically-using-life-cycle-thinking.html (accessed March 29, Washington, DC., 2020).Google Scholar
Faid, K., Leclerc, M., and Chayer, M.: Novel self-acid-doped highly conducting polymers. US Patent 6(51), 679 (1997).Google Scholar
Bodnaryk, W.J., Fong, D., and Adronov, A.: Enrichment of metallic carbon nanotubes using a two-polymer extraction method. ACS Omega 3(11), 1623816245 (2018).CrossRefGoogle ScholarPubMed
Ma, C., Yu, J., Wang, B., Song, Z., Xiang, J., Hu, S., Su, S., and Sun, L.: Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review. Renew. Sustain. Energy Rev. 61, 433450 (2016).CrossRefGoogle Scholar
Riise, B.: Recovering plastics from electronics waste. Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies, Chen, X., Zhong, Y., Zhang, L., Howarter, J.A., Baba, A.A., Wang, C., Sun, Z., Zhang, M., Olivetti, E., Luo, A., and Powell, A., ed. 295305 (Springer, Cham, Switzerland, 2020).CrossRefGoogle Scholar
Buekens, A.G. and Huang, H.: Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes. Resour. Conserv. Recycl. 23(3), 163181 (1998).CrossRefGoogle Scholar
Commission Regulation (EU) 2019/2021 of 1 October 2019 laying down ecodesign requirements for electronic displays pursuant to Directive 2009/125/EC of the European Parliament and of the Council, amending Commission Regulation (EC) No 1275/2008 and repealing Commission Regulation (EC) No 642/2009. Available at: https://op.europa.eu/en/publication-detail/-/publication/648e809d-1729-11ea-8c1f-01aa75ed71a1/language-en/format-HTML/source-118558953.Google Scholar
Carra, R., Famili, A., and LaMotte, R.: Circular economy & product design mandates: EU bans halogenated flame retardants in electronic components and imposes reparability obligations. Natl. Law Rev., October 9th 2019. Available at: https://natlawreview.com/article/circular-economy-product-design-mandates-eu-nas-halogenated-flame-retardants (accessed March 29, 2020).Google Scholar
Huang, X.: Materials and applications of bioresorbable electronics. J. Semiconduct. 39(1), 011003 (2018).CrossRefGoogle Scholar
Williams, D.F.: The Williams Dictionary of Biomaterials (Liverpool University Press, Liverpool, UK, 2012).Google Scholar
Liu, Y., Zheng, Y., and Hayes, B.: Degradable, absorbable or resorbable—What is the best grammatical modifier for an implant that is eventually absorbed by the body? Sci. China Mater. 60(5), 377391 (2017).CrossRefGoogle Scholar
Feig, V.R., Tran, H., and Bao, Z.: Biodegradable polymeric materials in degradable electronic devices. ACS Cent. Sci. 4(3), 337348 (2018).CrossRefGoogle ScholarPubMed
Wang, X., Qin, X., Hu, C., Terzopoulou, A., Chen, X., Huang, T., Maniura-Wever, K., Pané, S., and Nelson, B.J.: 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 28(45), 18 (2018).Google Scholar
Feron, K., Lim, R., Sherwood, C., Keynes, A., Brichta, A., and Dastoor, P.C.: Organic bioelectronics: Materials and biocompatibility. Int. J. Mol. Sci. 8(19), 2382 (2018).CrossRefGoogle Scholar
Li, R., Wang, L., Kong, D., and Yin, L.: Recent progress on biodegradable materials and transient electronics. Bioact. Mater. 3(3), 322333 (2018).CrossRefGoogle ScholarPubMed
Leja, K. and Lewandowicz, G.: Polymer biodegradation and biodegradable polymers—A review. Pol. J. Environ. Stud. 19(2), 255266 (2010).Google Scholar
ASTM d6400-12: Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. J. ASTM Int. 1, 13 (2012).Google Scholar
Platt, D.K.: Biodegradable Polymers: Market Report (Smithers Rapra Technology, Shawbury, UK, 2006).Google Scholar
Knapp, J.S. and Bromley-Challoner, K.C.A.: Recalcitrant organic compounds. Handbook of Water and Wastewater Microbiology, Chapter, J. S., Knapp, K. C. A., Bromley-Challoner, Mara D., and Horan, N., ed. (Elsevier, Amsterdam, The Netherlands, 2003); pp. 559595.CrossRefGoogle Scholar
Mara, D. and Horan, N.: Handbook of Water and Wastewater Microbiology 597610 (Elsevier, Amsterdam, The Netherlands, 2003).Google Scholar
Narancic, T., Verstichel, S., Reddy Chaganti, S., Morales-Gamez, L., Kenny, S.T., De Wilde, B., Padamati, R.B., and O’Connor, K.E.: Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 52(18), 1044110452 (2018).CrossRefGoogle Scholar
Narayan, R.: Biodegradable and biobased plastics: An overview. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture, Malinconico, M., ed. 2334 (Springer, Berlin, Heidelberg, Germany, 2017).CrossRefGoogle Scholar
Narayan, R.: Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment. MRS Bull. 36(9), 716721 (2011).CrossRefGoogle Scholar
Martino, L., Basilissi, L., Farina, H., Ortenzi, M.A., Zini, E., Di Silvestro, G., and Scandola, M.: Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures. Eur. Polym. J. 59, 6977 (2014).CrossRefGoogle Scholar
Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., and Mohanty, A.K.: Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 38(10–11), 16531689 (2013).CrossRefGoogle Scholar
Lambert, S. and Wagner, M.: Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 22(46), 68556871 (2017).CrossRefGoogle Scholar
Ellen MacArthur Foundation: Cities and Circular Economy for Food (2018).Google Scholar
Ghasemi Ghodrat, A., Tabatabaei, M., Aghbashlo, M., and Mussatto, S.I.: Waste management strategies; the state of the art. In Biogas: Fundamentals, Process, and Operation, Tabatabaei, M. and Ghanavati, H., eds. (Springer, Cham, Switzerland, 2018); Ch. 1, pp. 133, Series Biofuel and Biorefinery Technologies.Google Scholar
Favoino, E. and Hogg, D.: The potential role of compost in reducing greenhouse gases. Waste Manag. Res. 26(1), 6169 (2008).CrossRefGoogle ScholarPubMed
Pandyaswargo, A.H. and Premakumara, D.G.J.: Financial sustainability of modern composting: The economically optimal scale for municipal waste composting plant in developing asia. Int. J. Recycl. Org. Waste Agric. 3(4) (2014).CrossRefGoogle Scholar
Bastianoni, S., Porcelli, M., and Pulselli, F.M.: Emergy evaluation of composting municipal solid waste. Environ. Waste Manag. 56, 243252 (2002).Google Scholar
Sakai, S., Yoshida, H., Hiratsuka, J., Vandecasteele, C., Kohlmeyer, R., Rotter, V.S., Passarini, F., Santini, A., Peeler, M., Li, J., Oh, G., Chi, N.K., Bastian, L., Moore, S., Kajiwara, N., Takigami, H., Itai, T., Takahashi, S., Tanabe, S., Tomoda, K., Hirakawa, T., Hirai, Y., Asari, M., and Yano, J.: An international comparative study of end-of-life vehicle (ELV) recycling systems. J. Mater. Cycles Waste Manag. 16(1), 120 (2014).CrossRefGoogle Scholar
Love, S.A., Maurer-Jones, M.A., Thompson, J.W., Lin, Y.-S., and Haynes, C.L.: Assessing nanoparticle toxicity. Annu. Rev. Anal. Chem. 5, 181205 (2012).CrossRefGoogle ScholarPubMed
Tarazona, J.V. and Ramos-Peralonso, M.J.: Ecotoxicology, terrestrial. In Encyclopedia of Toxicology, 3rd ed., Wexler, P., ed. 276280 (Academic Press, Amsterdam, Netherlands, 2014).CrossRefGoogle Scholar
Doherty, F.G.: A review of the Microtox® toxicity test system for assessing the toxicity of sediments and soils. Water Qual. Res. J. 36(3), 475518 (2001).CrossRefGoogle Scholar
Rillig, M.C.: Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 46, 64536454 (2012).CrossRefGoogle ScholarPubMed
Tan, M.J., Owh, C., Chee, P.L., Kyaw, A.K.K., Kai, D., and Loh, X.J.: Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. J. Mater. Chem. C 4, 55315558 (2016).CrossRefGoogle Scholar
Malliaras, G. and Friend, R.: An organic electronics primer. Phys. Today 58(5), 5358 (2005).CrossRefGoogle Scholar
Todeschini, R., Consonni, V., Ringsted, T., Ballabio, D., and Mansouri, K.: Quantitative structure–activity relationship models for ready biodegradability of chemicals. J. Chem. Inf. Model. 53(4), 867878 (2013).Google Scholar
Boethling, R.S., Sommer, E., and DiFiore, D.: Designing small molecules for biodegradability. Chem. Rev. 107(6), 22072227 (2007).CrossRefGoogle ScholarPubMed
van der Zee, M.: Methods for evaluating the biodegradability of environmentally degradable polymers. In Handbook of Biodegradable Polymers, 2nd ed., Bastioli, C., ed. 128 (Shawburry:Smithers Rapra, Shawbury, UK, 2014).Google Scholar
ASTM International, ASTM D5338-15: Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials under Controlled Composting Conditions, Incorporating Thermophilic Temperatures (ASTM Standard, 2015).Google Scholar
Sintim, H.Y., Bary, A.I., Hayes, D.G., English, M.E., Schaeffer, S.M., Miles, C.A., Zelenyuk, A., Suski, K., and Flury, M.: Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Sci. Total Environ. 675, 686693 (2019).CrossRefGoogle ScholarPubMed
Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test (OECD, 2006).Google Scholar