Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T18:52:23.812Z Has data issue: false hasContentIssue false

Ultra-small CoO nanocrystals anchored on reduced graphene oxide for enhanced lithium storage in lithium ion batteries

Published online by Cambridge University Press:  10 May 2017

Kartick Bindumadhavan
Affiliation:
Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
Pei-Yi Chang
Affiliation:
Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
Ming-Hsiu Yeh
Affiliation:
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan
Ruey-an Doong*
Affiliation:
Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan
*
Address all Correspondence to R.-A. Doong at radoong@mx.nthu.edu.tw
Get access

Abstract

In this study, we have developed a facile and simple route for preparation of ultrafine CoO/reduced graphene oxide (rGO) nanohybrids with tunable particle size and crystallinity for lithium-ion battery (LIB) application. At the optimized calcination time of 60 min, the homogeneous and ultrafine CoO nanoparticles with mean size of 4.5 nm can be intimately attached onto rGO surface to rapidly transport Li ions and electrons. The CoO/rGO exhibits excellent rate capability and high specific capacity of 520 mAh/g at 2400 mA/g. In addition, the capacity can be recovered to 900 mAh/g at 150 mA/g after 60 cycles, indicating the superior electrochemical performance of CoO/rGO for LIB applications.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lu, L., Han, X., Li, J., Hua, J., and Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272288 (2013).Google Scholar
2. Etacheri, V., Marom, R., Elazari, R., Salitra, G., and Aurbach, D.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 32433262 (2011).Google Scholar
3. Wu, Z.S., Ren, W., Xu, L., Li, F., and Cheng, H.M.: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 54635471 (2011).Google Scholar
4. Zhao, R., Zhang, S., Liu, J., and Gu, J.: A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. J. Power Sources 299, 557577 (2015).Google Scholar
5. Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192, 11261127 (1976).Google Scholar
6. Chang, P.Y., Kartick, B., and Doong, R.A.: Size effect of ordered mesoporous carbon nanospheres for anodes in Li-ion battery. Nanomaterials 5, 23482358 (2015).CrossRefGoogle ScholarPubMed
7. Su, D., Xie, X., Munroe, P., Dou, S., and Wang, G.: Mesoporous hexagonal Co3O4 for high performance lithium ion batteries. Sci. Rep. 4, 6519 (2014).Google Scholar
8. Guo, J., Zhu, H., Sun, Y., Tang, L., and Zhang, X.: Boosting the lithium storage performance of MoS2 with graphene quantum dots. J. Mater. Chem. A 4, 47834789 (2016).Google Scholar
9. Sun, J., Xiao, L., Jiang, S., Li, G., Huang, Y., and Geng, J.: Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 27, 45944603 (2015).Google Scholar
10. Lim, Y.V., Huang, Z.X., Wang, Y., Du, F.H., Zhang, J., Chen, T.P., Ang, L.K., and Yang, H.Y.: WS2-3D graphene nano-architecture networks for high performance anode materials of lithium ion batteries. RSC Adv. 6, 107768107775 (2016).Google Scholar
11. Chen, S., Yeoh, W., Liu, Q., and Wang, G.: Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon 50, 45574565 (2012).Google Scholar
12. Yu, H., Ma, C., Ge, B., Chen, Y., Xu, Z., Zhu, C., Li, C., Ouyang, Q., Gao, P., and Li, J.: Three-dimensional hierarchical architectures constructed by graphene/MoS2 nanoflake arrays and their rapid charging/discharging properties as lithium-ion battery anodes. Chem. Eur. J. 19, 58185823 (2013).CrossRefGoogle ScholarPubMed
13. Zhou, E., Wang, C., Shao, M., Deng, X., and Xu, X.: MoO2 nanoparticles grown on carbon fibers as anode materials for lithium ion batteries. Ceram. Int. 43, 760765 (2017).Google Scholar
14. Wang, X., Zhang, Z., Chen, Y., Qu, Y., Lai, Y., and Li, J.: Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties. J. Alloy Compd. 600, 8490 (2014).Google Scholar
15. Prabhakar, S.J.R., Babu, R.S., Oh, M., Lah, M.S., Han, S.C., Jeong, J., and Pyo, M.: Dense CoO/graphene stacks via self-assembly for improved reversibility as high performance anode in lithium ion batteries. J. Power Sources 272, 10371045 (2014).Google Scholar
16. Guan, X., Nai, J., Zhang, Y., Pengxi, W., Yang, J., Zheng, L., Zhang, J., and Guo, L.: CoO hollow cube/reduced graphene oxide composites with enhanced lithium storage capability. Chem. Mater. 26, 59585964 (2014).Google Scholar
17. Liu, S., Dong, Y., Zhao, C., Zhao, Z., Yu, C., Wang, Z., and Qiu, J.: Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction. Nano Energy 12, 578587 (2015).Google Scholar
18. Dong, Y., Yu, M., Wang, Z., Liu, Y., Wang, X., Zhao, Z., and Qiu, J.: A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv. Funct. Mater. 26, 75907598 (2016).Google Scholar
19. Dong, Y., Liu, S., Liu, Y., Tang, Y., Yang, T., Wang, X., Wang, Z., Zhao, Z., and Qiu, J.: Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage. J. Mater. Chem. A 4, 17718 (2016).Google Scholar
20. Yu, C., Yang, J., Zhao, C., Fan, X., Wang, G., and Qiu, J.: Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon. Nanoscale 6, 30973104 (2014).Google Scholar
21. Guan, H., Wang, X., Li, H., Zhi, C., Zhai, T., Bando, Y., and Golberg, D.: CoO octahedral nanocages for high-performance lithium ion batteries. Chem. Commun. 48, 48784880 (2012).Google Scholar
22. Rai, A.K., Anh, L.T., Gim, J., and Kim, J.: One-step synthesis of CoO anode material for rechargeable lithium-ion batteries. Ceram. Int. 39, 93259330 (2013).Google Scholar
23. Qin, D., Yan, P., Li, G., Wang, Y., An, Y., and Xing, J.: Synthesis of hierarchical CoO nano/microstructure as anode materials for lithium ion batteries. J. Nanomater. 2014, 489862 (2014).Google Scholar
24. Yuan, W., Zhang, J., Xie, D., Dong, Z., Su, Q., and Du, G.: Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochim. Acta 108, 506511 (2013).Google Scholar
25. Sun, Y., Hu, X., Luo, W., and Huang, Y.: Ultrathin CoO/graphene hybrid nanosheets: a highly stable anode material for lithium-ion batteries. J. Phys. Chem. C 116, 2079420799 (2012).CrossRefGoogle Scholar
26. Kartick, B., Yeh, M.H., Chou, T.S., Chang, P.Y., and Doong, R.A.: Ultrafine CoO embedded reduced graphene oxide nanocomposites: a high rate anode for Li-ion battery. ChemistrySelect 1, 57585767 (2016).Google Scholar
27. Dong, Y., Liu, S., Wang, Z., Liu, Y., Zhao, Z., and Qiu, J.: Compressible graphene aerogel supported CoO nanostructures as a binder-free electrode for high performance lithium-ion batteries. RSC Adv. 5, 89298932 (2015).Google Scholar
28. Fu, G., Chang, K., Shangguan, E., Tang, H., Li, B., Chang, Z., Yuan, X.-Z., and Wang, H.: Synthesis of CoO/reduced graphene oxide composite as an alternative additive for the nickel electrode in alkaline secondary batteries. Electrochim. Acta 180, 373381 (2015).Google Scholar
29. Zhu, W., Huang, H., Gan, Y., Tao, X., Xia, Y., and Zhang, W.: Mesoporous cobalt monoxide nanorods grown on reduced graphene oxide nanosheets with high lithium storage performance. Electrochim. Acta 138, 376382 (2014).CrossRefGoogle Scholar
30. Guan, Q., Cheng, J., Li, X., Wang, B., Huang, L., Nie, F., and Ni, W.: Low temperature vacuum synthesis of triangular CoO nanocrystal/graphene nanosheets composites with enhanced lithium storage capacity. Sci. Rep. 5, 1001710027 (2015).Google Scholar
31. Yang, J., Zang, C., Sun, L., Zhao, N., and Cheng, X.: Synthesis of graphene/Ag nanocomposite with good dispersibility and electroconductibility via solvothermal method. Mater. Chem. Phys. 129, 270274 (2011).Google Scholar
32. Poizot, P., Laruella, S., Grugeon, S., Dupont, L., and Tarascon, J.-M.: Nano-sized transition metal oxides as negative electrode materials for lithium-ion batteries. Nature 407, 496499 (2000).Google Scholar
33. Zhang, S.S.: A review on electrolyte additives for lithium ion batteries. J. Power Source 162, 13791394 (2006).Google Scholar
34. Zhang, M., Wang, Y., and Jia, M.: Three-dimensional reduced graphene oxides hydrogel anchored with ultrafine CoO nanoparticles as anode for lithium ion batteries. Electrochim. Acta 129, 425432 (2014).Google Scholar
34. Laruelle, S., Grugeon, S., Poizot, P., Dolle, M., Dupont, L., and Tarascon, J.M.: On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 149, A627A634 (2002).Google Scholar