Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T23:59:38.319Z Has data issue: false hasContentIssue false

Synthesis and characterization of semiconducting sinnerite (Cu6As4S9) thin films

Published online by Cambridge University Press:  12 February 2020

Scott A. McClary
Affiliation:
Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN47907, USA
Rakesh Agrawal*
Affiliation:
Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN47907, USA
*
Address all correspondence to Rakesh Agrawal at agrawalr@purdue.edu
Get access

Abstract

Sinnerite (Cu6As4S9) is a semiconductor computed to have attractive optoelectronic properties, but little attention has been paid to its experimental synthesis and characterization. Here, the authors report the first synthesis of polycrystalline sinnerite thin films. By heating Cu3AsS4 nanoparticles in sealed ampoules with As2S2 powder, a phase transformation to Cu6As4S9 is achieved along with the formation of micron-sized dense grains appropriate for device applications. The films display a bandgap of ~1.2 eV, significant photocurrent generation under simulated AM1.5 illumination, and carrier lifetimes nearing 1 ns, demonstrating the promise of sinnerite for use in photovoltaic applications.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wadia, C., Alivisatos, A.P., and Kammen, D.M.: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009).CrossRefGoogle ScholarPubMed
2.Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., and Mitzi, D.B.: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014).CrossRefGoogle Scholar
3.Gershon, T., Gokmen, T., Gunawan, O., Haight, R., Guha, S., and Shin, B.: Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance. MRS Commun. 4, 159 (2014).CrossRefGoogle Scholar
4.Miskin, C.K., Yang, W.-C., Hages, C.J., Carter, N.J., Joglekar, C.S., Stach, E.A., and Agrawal, R.: 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks. Prog. Photovoltaics Res. Appl. 23, 654 (2015).CrossRefGoogle Scholar
5.Dunlap-Shohl, W.A., Zhou, Y., Padture, N.P., and Mitzi, D.B.: Synthetic approaches for halide perovskite thin films. Chem. Rev. 119, 3193 (2019).CrossRefGoogle ScholarPubMed
6.Shi, T., Yin, W.-J., Al-Jassim, M., and Yan, Y.: Structural, electronic, and optical properties of Cu3-V-VI4 compound semiconductors. Appl. Phys. Lett. 103, 152105 (2013).CrossRefGoogle Scholar
7.Balow, R.B., Sheets, E.J., Abu-Omar, M.M., and Agrawal, R.: Synthesis and characterization of copper arsenic sulfide nanocrystals from earth abundant elements for solar energy conversion. Chem. Mater. 27, 2290 (2015).10.1021/acs.chemmater.5b00701CrossRefGoogle Scholar
8.Balow, R.B., Miskin, C.K., Abu-Omar, M.M., and Agrawal, R.: Synthesis and characterization of Cu3(Sb1−xAsx)S4 semiconducting nanocrystal alloys with tunable properties for optoelectronic device applications. Chem. Mater. 29, 573 (2017).CrossRefGoogle Scholar
9.Pauporté, T. and Lincot, D.: Electrical, optical and photoelectrochemical properties of natural enargite, Cu3AsS4. Adv. Mater. Opt. Electron. 5, 289 (1995).CrossRefGoogle Scholar
10.Das, A., Shamirian, A., and Snee, P.T.: Arsenic silylamide: an effective precursor for arsenide semiconductor nanocrystal synthesis. Chem. Mater. 28, 4058 (2016).CrossRefGoogle Scholar
11.McClary, S.A., Andler, J., Handwerker, C.A., and Agrawal, R.: Solution-processed copper arsenic sulfide thin films for photovoltaic applications. J. Mater. Chem. C 5, 6913 (2017).CrossRefGoogle Scholar
12.Yu, L., Kokenyesi, R.S., Keszler, D.A., and Zunger, A.: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43 (2013).CrossRefGoogle Scholar
13.Wallace, S.K., Svane, K.L., Huhn, W.P., Zhu, T., Mitzi, D.B., Blum, V., and Walsh, A.: Candidate photoferroic absorber materials for thin-film solar cells from naturally occurring minerals: enargite, stephanite, and bournonite. Sustain. Energy Fuels 1, 1339 (2017).CrossRefGoogle Scholar
14.Wallace, S.K., Butler, K.T., Hinuma, Y., and Walsh, A.: Finding a junction partner for candidate solar cell absorbers enargite and bournonite from electronic band and lattice matching. J. Appl. Phys. 125, 055703 (2019).CrossRefGoogle Scholar
15.Zhang, R., Chen, K., Du, B., and Reece, M.J.: Screening for Cu–S based thermoelectric materials using crystal structure features. J. Mater. Chem. A 5, 5013 (2017).10.1039/C6TA10607BCrossRefGoogle Scholar
16.McClary, S.A., Balow, R.B., and Agrawal, R.: Role of annealing atmosphere on the crystal structure and composition of tetrahedrite–tennantite alloy nanoparticles. J. Mater. Chem. C 6, 10538 (2018).CrossRefGoogle Scholar
17.Levinsky, P., Candolfi, C., Dauscher, A., Tobola, J., Hejtmánek, J., and Lenoir, B.: Thermoelectric properties of the tetrahedrite–tennantite solid solutions Cu12Sb4−xAsxS13 and Cu10Co2Sb4−yAsyS13 (0 ≤ x, y ≤ 4). Phys. Chem. Chem. Phys. 21, 4547 (2019).CrossRefGoogle Scholar
18.Maske, S. and Skinner, B.J.: Studies of the sulfosalts of copper I. Phases and phase relations in the system Cu-As-S. Econ. Geol. 66, 901 (1971).CrossRefGoogle Scholar
19.Makovicky, E. and Skinner, B.J.: Studies of the sulfosalts of copper II. The crystallography and composition of sinnerite, Cu6As4S9. Am. Mineral. 57, 824 (1972).Google Scholar
20.Hautala, J. and Taylor, P.C.: A review of optical properties of metal chalcogenide glasses. J. Non-Cryst. Solids 141, 24 (1992).CrossRefGoogle Scholar
21.Yan, B., Girlani, S., and Taylor, P.C.: Defect structure and conductivity in tetrahedrally coordinated metal chalcogenide amorphous semiconductors. Phys. Rev. B 56, 10249 (1997).CrossRefGoogle Scholar
22.Bindi, L., Makovicky, E., Nestola, F., and De Battisti, L.: Sinnerite, Cu6As4S9, from the Lengenbach Quarry, Binn Valley, Switzerland: description and re-investigation of the crystal structure. Can. Mineral. 51, 851 (2013).CrossRefGoogle Scholar
23.Kovalenko, M.V., Bodnarchuk, M.I., Zaumseil, J., Lee, J.-S., and Talapin, D.V.: Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J. Am. Chem. Soc. 132, 10085 (2010).CrossRefGoogle ScholarPubMed
24.Xia, Z., Zhong, J., Leng, M., Hu, L., Xue, D.-J.J., Yang, B., Zhou, Y., Liu, X., Qin, S., Cheng, Y.-B.B., and Tang, J.: Generalized water-processed metal chalcogenide complexes: synthesis and applications. Chem. Mater. 27, 8048 (2015).CrossRefGoogle Scholar
25.Wu, W., Cao, Y., Caspar, J.V., Guo, Q., Johnson, L.K., Malajovich, I., Rosenfeld, H.D., and Choudhury, K.R.: Studies of the fine-grain sub-layer in the printed CZTSSe photovoltaic devices. J. Mater. Chem. C 2, 3777 (2014).CrossRefGoogle Scholar
26.Huang, T.J., Yin, X., Tang, C., Qi, G., and Gong, H.: Influence of ligands on the formation of kesterite thin films for solar cells: a comparative study. ChemSusChem 9, 1032 (2016).CrossRefGoogle ScholarPubMed
27.Hages, C.J., Koeper, M.J., Miskin, C.K., Brew, K.W., and Agrawal, R.: Controlled grain growth for high performance nanoparticle-based kesterite solar cells. Chem. Mater. 28, 7703 (2016).CrossRefGoogle Scholar
28.McLeod, S., Alruqobah, E., and Agrawal, R.: Liquid assisted grain growth in solution processed Cu(In,Ga)(S,Se)2. Sol. Energy Mater. Sol. Cells 195, 12 (2019).CrossRefGoogle Scholar
29.Kubelka, P. and Munk, F.: Ein Beitrag zur Optik der Farbanstriche (A contribution to the optics of pigments). Z. Tech. Phys. 12, 593 (1931).Google Scholar
30.Gagne, R.R., Koval, C.A., and Lisensky, G.C.: Ferrocene as an internal standard for electrochemical measurements. Inorg. Chem. 19, 2854 (1980).CrossRefGoogle Scholar
Supplementary material: File

McClary and Agrawal Supplementary Materials

McClary and Agrawal Supplementary Materials

Download McClary and Agrawal Supplementary Materials(File)
File 1.3 MB