Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T17:05:16.422Z Has data issue: false hasContentIssue false

Rapid and controlled electrochemical synthesis of crystalline niobium oxide microcones

Published online by Cambridge University Press:  26 June 2015

Basamat S. Shaheen
Affiliation:
Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt Materials Science, California Institute of Technology, Pasadena, California 91125
Timothy C. Davenport
Affiliation:
Materials Science, California Institute of Technology, Pasadena, California 91125
Hanadi G. Salem
Affiliation:
Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
Sossina M. Haile
Affiliation:
Materials Science, California Institute of Technology, Pasadena, California 91125
Nageh K. Allam*
Affiliation:
Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt Materials Science, California Institute of Technology, Pasadena, California 91125
*
Address all correspondence to N. K. Allam atnageh.allam@aucegyt.edu
Get access

Abstract

We demonstrate the fabrication by anodization of niobium oxide microcones, several microns long, from aqueous solutions of 1 wt% hydrogen fluoride (HF) with varied sodium fluoride (NaF) concentration (0–1 M). Raman spectroscopy and x-ray diffractometer analysis revealed the as-grown microcones to be crystalline Nb2O5−x with preferred (1 0 0) and (0 1 0) orientations. The overall Nb2O5−x formation rate increased with the increasing NaF concentration, and structures as tall as 20 μm were achieved in just 20 min of anodization at 1 M NaF. Rapid formation of niobia microcones was even observed in the absence of HF at this NaF concentration. Photocatalytic activity for water oxidation was highest for microcones grown under the highest NaF concentration.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wachs, I.E., Jehng, J.M., Deo, G., Hu, H., and Arora, N.: Redox properties of niobium oxide catalysts. Catal. Today 28, 199 (1996).CrossRefGoogle Scholar
2.Rani, R.A., Zoolfakar, A.S., O'Mullane, A.P., Austin, M.W., and Kalantar-Zadeh, K.: Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2, 15683 (2014).CrossRefGoogle Scholar
3.Nowak, I. and Ziolek, M.: Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem. Rev. 99, 3603 (1999).CrossRefGoogle ScholarPubMed
4.Yoo, J.E., Park, J., Cha, G., and Choi, J.: Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications. Thin Solid Films 531, 583 (2013).CrossRefGoogle Scholar
5.Nagahara, K., Sakairi, M., Takahashi, H., Matsumoto, K., Takayama, K., and Oda, Y.: Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium. Electrochim. Acta 52, 2134 (2007).CrossRefGoogle Scholar
6.Tzvetkov, B., Bojinov, M., and Girginov, A.: Nanoporous oxide formation by anodic oxidation of Nb in sulphate-fluoride electrolytes. J. Solid State Electrochem. 13, 1215 (2009).CrossRefGoogle Scholar
7.Lee, K., Yang, Y., Yang, M., and Schmuki, P.: Formation of highly ordered nanochannel Nb oxide by self-organizing anodization. Chem.: Eur. J. 18, 9521 (2012).CrossRefGoogle ScholarPubMed
8.Ou, J.Z., Rani, R.A., Ham, M.H., Field, M.R., Zhang, Y., Zheng, H., Reece, P., Zhuiykov, S., Sriram, S., Bhaskaran, M., Kaner, R.B., and Kalantar-Zadeh, K.: Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 6, 4045 (2012).CrossRefGoogle ScholarPubMed
9.Karlinsey, R.L.: Preparation of self-organized niobium oxide microstructures via potentiostatic anodization. Electrochem. Commun. 7, 1190 (2005).CrossRefGoogle Scholar
10.Karlinsey, R.L.: Self-assembled Nb2O5 microcones with tailored crystallinity. J. Mater. Sci. 41, 5017 (2006).CrossRefGoogle Scholar
11.Yang, S., Habazaki, H., Fujii, T., Aoki, Y., Skeldon, P., and Thompson, G.E.: Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes. Electrochim. Acta 56, 7446 (2011).CrossRefGoogle Scholar
12.Oikawa, Y., Minami, T., Mayama, H., Tsujii, K., Fushimi, K., Aoki, Y., Skeldon, P., Thompson, G.E., and Habazaki, H.: Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability. Acta Mater. 57, 3941 (2009).CrossRefGoogle Scholar
13.Jeong, B.Y. and Jung, E.H.: Micro-mountain and nano-forest pancake structure of Nb2O5 with surface nanowires for dye-sensitized solar cells. Met. Mater. Int. 19, 617 (2013).CrossRefGoogle Scholar
14.Karlinsey, R.L. and Yi, K.: Self-assembly and bioactive response of a crystalline metal oxide in a simulated blood fluid. J. Mater. Sci.: Mater. Med. 19, 1349 (2008).Google Scholar
15.Yao, D.D., Rani, R.A., O'Mullane, A.P., Kalantar-zadeh, K., and Ou, J.Z.: High performance electrochromic devices based on anodized nanoporous Nb2O5. J. Phys. Chem. C 118, 476 (2014).CrossRefGoogle Scholar
16.Kato, K. and Tamura, S.: Crystal-structure of T-Nb2O5. Acta Crystallogr. B : Struct. Sci. 31, 673 (1975).CrossRefGoogle Scholar
17.Tamura, S., Kato, K., and Goto, M.: Single-crystals of T-Nb2O5 obtained by slow cooling method under high-pressures. Z. Anorg. Allg. Chem. 410, 313 (1974).CrossRefGoogle Scholar
18.Kobayashi, Y., Hata, H., Salama, M., and Mallouk, T.E.: Scrolled sheet precursor route to niobium and tantalum oxide nanotubes. Nano Lett. 7, 2142 (2007).CrossRefGoogle Scholar
19.Murakami, Y., Wada, Y., and Morikawa, A.: Catalytic activity of nonstoichiomeric niobium oxide with controlled composition, NbO2.488–2.500, for butene isomerization. Bull. Chem. Soc. Jpn. 61, 2747 (1988).CrossRefGoogle Scholar
20.Patterson, A.L.: The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
21.Soares, M.R.N., Leite, S., Nico, C., Peres, M., Fernandes, A.J.S., Graca, M.P.F., Matos, M., Monteiro, R., Monteiro, T., and Costa, F.M.: Effect of processing method on physical properties of Nb2O5. J. Eur. Ceram. Soc. 31, 501 (2011).CrossRefGoogle Scholar
22.Brayner, R. and Bozon-Verduraz, F.: Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect. Phys. Chem. Chem. Phys. 5, 1457 (2003).CrossRefGoogle Scholar
23.Hardcastle, F.D. and Wachs, I.E.: Determination of molybdenum oxygen bond distances and bond orders by Raman-spectroscopy. J. Raman Spectrosc. 21, 683 (1990).CrossRefGoogle Scholar
24.Lim, J.H., Park, G., and Choi, J.: Synthesis of niobium oxide nanopowders by field-crystallization-assisted anodization. Curr. Appl. Phys. 12, 155 (2012).CrossRefGoogle Scholar
25.Habazaki, H., Ogasawara, T., Konno, H., Shimizu, K., Nagata, S., Skeldon, P., and Thompson, G.E.: Field crystallization of anodic niobia. Corros. Sci. 49, 580 (2007).CrossRefGoogle Scholar
26.Jackson, J.F. and Hendy, J.C.: The use of niobium as an anode material in liquid filled electrolytic capacitors. Electrocomp. Sci. Technol. 1, 27 (1974).CrossRefGoogle Scholar
27.Zhao, J.L., Wang, X.X., Xu, R.Q., Mi, Y.J., and Li, Y.X.: Preparation and growth mechanism of niobium oxide microcones by the anodization method. Electrochem. Solid State Lett. 10, C31 (2007).CrossRefGoogle Scholar
28.Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., and Nuttall, R.L.: The NBS tables of chemical and thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, Supplement 2, p. 38 and 207 (1982).Google Scholar
29.Rani, R.A., Zoolfakar, A.S., Ou, J.Z., Ab Kadir, R., Nili, H., Latham, K., Sriram, S., Bhaskaran, M., Zhuiykov, S., Kaner, R.B., and Kalantar-Zadeh, K.: Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. Chem. Commun. 49, 6349 (2013).CrossRefGoogle ScholarPubMed
30.Ruff, T., Hahn, R., Killian, M.S., Asoh, H., Ono, S., and Schmuki, P.: Visible light photo response from N-doped anodic niobium oxide after annealing in ammonia atmosphere. Electrochim. Acta 62, 402 (2012).CrossRefGoogle Scholar
31.Huang, H., Wang, C., Huang, J., Wang, X.M., Du, Y.K., and Yang, P.: Structure inherited synthesis of N-doped highly ordered mesoporous Nb2O5 as robust catalysts for improved visible light photoactivity. Nanoscale 6, 7274 (2014).CrossRefGoogle ScholarPubMed
32.Gan, J.Y., Lu, X.H., and Tong, Y.X.: Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 6, 7142 (2014).CrossRefGoogle ScholarPubMed