Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T20:20:35.507Z Has data issue: false hasContentIssue false

Optical hoovering on plasmonic rinks

Published online by Cambridge University Press:  15 July 2019

John Canning*
Affiliation:
interdisciplinary Photonics Laboratories, School of Electrical and Data Engineering, Tech Lab, University of Technology (UTS), Sydney, NSW 2007 & 2019, Australia School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
*
Address all correspondence to John Canning at john.canning@uts.edu.au
Get access

Abstract

Excitation of surface waves on conducting materials provides a near resistance-free interface capable of a material glissade either by plasmon forces or by optical beam tractors. Analogous to an ice hockey rink, as proof-of-principle plasmon-assisted optical traction, or hoovering, of water drops on a gold surface is demonstrated. Changes in the contact angle provide a novel, low-cost nanoscale method of quantifying observable and potentially tunable changes. Variability in thresholds and movement, including jumps, is observed and can be explained by the presence of significant roughness, measured by scanning electron microscopy, with water tension. The demonstration opens a path to directly integrate various optical and plasmonic traction technologies. Implications of the phenomena and ways of improving transport and potential applications spanning configurable microfluidics, antennas, tunable lenses, diagnostics, sensing, and active Kerr and other devices are discussed.

Type
Research Letters
Copyright
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Otto, A.: Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398410 (1968).10.1007/BF01391532Google Scholar
2.Kretschmann, E.: The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys. 241, 313324 (1971).10.1007/BF01395428Google Scholar
3.Canning, J., Qian, J., and Cook, K.: Large dynamic range SPR measurements in the visible using a ZnSe prism. Photonic Sens. 5, 278283 (2015).10.1007/s13320-015-0262-zGoogle Scholar
4.Kreuwel, H.J.M., Lambeck, P.V., Gent, J.V., and Popma, T.J.A.: Surface Plasmon Dispersion And Luminescence Quenching Applied To Planar Waveguide Sensors For The Measurement Of Chemical Concentrations. In Proc. SPIE 0798, Fiber Optic Sensors II, The Netherlands, (14 October 1987).10.1117/12.941109Google Scholar
5.Jorgenson, R.C. and Yee, S.S.: A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B 12, 213220 (1993).10.1016/0925-4005(93)80021-3Google Scholar
6.Han, C., Canning, J., Cook, K., Hossain, M.A., and Ding, H.: Exciting surface waves on metal-coated multimode optical waveguides using Skew Rays. Opt. Lett. 41, 53535356 (2016).10.1364/OL.41.005353Google Scholar
7.Vukusic, P.S., Bryan-Brown, G.P., and Sambles, J.R.: Surface plasmon resonance on gratings as a novel means for gas sensing. Sens. Actuators B 8, 81558160 (1991).Google Scholar
8.Dostalek, J., Homola, J., and Miler, M.: Rich information format surface plasmon resonance biosensor based on array of diffraction gratings. Sens. Actuators B 107, 154161 (2005).10.1016/j.snb.2004.08.033Google Scholar
9.Wood, R.W.: On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 4, 396402 (1902).10.1080/14786440209462857Google Scholar
10.Homola, J., Yee, S.S., and Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuators B 54, 315 (1999).10.1016/S0925-4005(98)00321-9Google Scholar
11.Altintas, Z. and Fakanya, W.M.: SPR-based biosensor technologies in disease detection and diagnostics. In Biosensors and Nanotechnology: Applications in Health Care Diagnostics, edited by Atlintas, Z. (Wiley, USA, 2017), Ch. 4.Google Scholar
12.Forward, R.L.: Roundtrip interstellar travel using laser-pushed lightsails. J. Spacecraft 21, 187195 (1984).10.2514/3.8632Google Scholar
13.Neves, A.A.R. and Cesar, C.L.: Analytical calculations of optical forces on spherical particles in optical tweezers: a tutorial. J. Opt. Soc. Am. B 36, 15251537 (2019).10.1364/JOSAB.36.001525Google Scholar
14.Ashkin, A. and Dziedzic, J.M.: Radiation pressure on a free liquid surface. Phys. Rev. Lett. 30, 139142 (1973).10.1103/PhysRevLett.30.139Google Scholar
15.Beattie, J.K., Djerdjev, A.M., Gray-Weale, A., Kallay, N., Lützenkirchen, J., Preočanin, T., and Selmani, A.: pH and the surface tension of water. J. Colloid Interface Sci. 422, 54 (2014).10.1016/j.jcis.2014.02.003Google Scholar
16.Canning, J., Tzoumis, N., and Beattie, J.K.: Water on Au sputtered films. Chem. Commun. 50, 91729175 (2014).10.1039/C4CC02492CGoogle Scholar
17.Tokunaga, E., Nosaka, Y., Hirabayashi, M., and Kobayashi, T.: Pockels effect of water in the electric double layer at the interface between water and transparent electrode. Surf. Sci. 601, 735741 (2007).10.1016/j.susc.2006.11.001Google Scholar
18.Suzuki, Y., Osawa, K., Yukita, S., Kobayashi, T., and Tokunaga, E.: Anomalously large electro-optic Pockels effect at the air-water interface with an electric field applied parallel to the interface. Appl. Phys. Lett. 108, 191103 (2016).10.1063/1.4949273Google Scholar
19.Stevens, M.J. and Grest, G.S.: Simulations of water at the interface with hydrophilic self-assembled monolayers. Biointerphases 3, FC13-22 (2008).10.1116/1.2977751Google Scholar
20.Bradac, C.: Nanoscale optical trapping: a review. Adv. Opt. Mater. 6, 1800005 (2018).10.1002/adom.201800005Google Scholar
21.Canning, J., Karim, A., Tzoumis, N., Tan, Y., Patyk, R., and Gibson, B.C.: Near orthogonal launch of SPR modes in Au films. Opt. Lett. 39, 50385041 (2014).10.1364/OL.39.005038Google Scholar
22.Fayad, H. and Record, P.: Broadband liquid antenna. Electron. Lett. 42, 133 (2006).10.1049/el:20063633Google Scholar
23.Moran, P.M., Dhamatelleke, S., Khaw, A.H., Tan, K.W., Chan, M.L., and Rodriguez, I.: Fluidic lenses with variable focus lens. Appl. Phys. Lett. 88, 041120 (2006).10.1063/1.2168245Google Scholar
24.Canning, J.: Water photonics, non-linearity and anomalously large electro-optic coefficients in poled silica fibres. MRS Commun. 8, 2934 (2018).10.1557/mrc.2018.15Google Scholar
25.Dutra, G., Canning, J., Padden, W., Martelli, C., and Dligatch, S.: Large area optical mapping of surface contact angle. Opt. Express 25, 2112721144 (2017).10.1364/OE.25.021127Google Scholar
26.Janeczko, C., Martelli, C., Canning, J., and Dutra, G.: Assessment of orchid surfaces using top-down contact angle mapping. IEEE Access. 7, 3136431375 (2019).10.1109/ACCESS.2019.2902730Google Scholar
27.Saavedra, J., Doan, H.A., Pursell, C.J., Grabow, L.C., and Chandler, B.D.: The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345, 15991602 (2014).10.1126/science.1256018Google Scholar
28.Pfeifer, R.N.C., Nieminen, T.A., Heckenberg, N.R., and Rubinsztein-Dunlop, H.: Colloquium: momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 11971216 (2007).10.1103/RevModPhys.79.1197Google Scholar
29.Applegate, R.W. Jr., Marr, D.W.M., Squier, J., and Graves, S.W.: Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars. Opt. Express 17, 1673116738 (2009).10.1364/OE.17.016731Google Scholar
30.Åslund, M., Jackson, S.D., Canning, J., Texeira, A., and Lyytikäinen, K.: The influence of skew rays on the angular losses of air clad fibres. Opt. Commun. 262, 7781 (2006).10.1016/j.optcom.2005.12.050Google Scholar