Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T12:35:10.990Z Has data issue: false hasContentIssue false

In situ observation of contact mechanisms in bioinspired adhesives at high magnification

Published online by Cambridge University Press:  10 October 2011

Dadhichi Paretkar
Affiliation:
INM-Leibniz Institute for New Materials and Saarland University, Saarbrücken, Saarland, Germany
Andreas S. Schneider
Affiliation:
INM-Leibniz Institute for New Materials and Saarland University, Saarbrücken, Saarland, Germany
Elmar Kroner
Affiliation:
INM-Leibniz Institute for New Materials and Saarland University, Saarbrücken, Saarland, Germany
Eduard Arzt*
Affiliation:
INM-Leibniz Institute for New Materials and Saarland University, Saarbrücken, Saarland, Germany
*
Address all correspondence to Eduard Arzt atEduard.Arzt@inm-gmbh.de
Get access

Abstract

We analyzed the contact mechanisms of bioinspired microfibrillar adhesives using in situ scanning electron microscopy. During adhesion tests we observed that (i) the superior adhesion of mushroom-shaped fibrils is assisted by the stochastic nature of detachment, (ii) the aspect ratio of microfibrils influences the bending/buckling behavior and the contact reformation, and (iii) the backing layer deformation causes the microfibrils to elastically interact with each other. These studies give new insights into the mechanisms responsible for adhesion of bioinspired fibrillar adhesives.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.del Campo, A., Greiner, C., Alvarez, I., and Arzt, E.: Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Adv. Mater. 19, 1973 (2007).CrossRefGoogle Scholar
2.Sitti, M. and Fearing, R.S.: Synthetic gecko foot-hair micro/nano structures as dry adhesives. J. Adhes. Sci. Technol. 17, 1055 (2003).CrossRefGoogle Scholar
3.Schubert, B., Majidi, C., Groff, R.E., Baek, S., Bush, B., Maboudian, R., and Fearing, R.S.: Towards friction and adhesion from high modulus microfiber arrays. J. Adhes. Sci. Technol. 21, 1297 (2007).CrossRefGoogle Scholar
4.del Campo, A., Greiner, C., and Arzt, E.: Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23, 10235 (2007).CrossRefGoogle ScholarPubMed
5.Ge, L., Sethi, S., Ci, L., Ajayan, P.M., and Dhinojwala, A.: Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. USA 104, 10792 (2007).CrossRefGoogle ScholarPubMed
6.Jeong, H.E., Lee, J-K., Kim, H.N., Moon, S.H., and Suh, K.Y.: A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc. Natl. Acad. Sci. USA 106, 5639 (2009).CrossRefGoogle ScholarPubMed
7.Jagota, A. and Bennison, S.J.: Mechanics of adhesion through a fibrillar microstructure. Integr. Comp. Biol. 42, 1140 (2002).CrossRefGoogle ScholarPubMed
8.Arzt, E., Gorb, S., and Spolenak, R.: From micro to nanocontacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100, 10603 (2003).CrossRefGoogle Scholar
9.Greiner, C., del Campo, A., and Arzt, E.: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio and preload. Langmuir 23, 3495 (2007).CrossRefGoogle ScholarPubMed
10.Spolenak, R., Gorb, S., Gao, H., and Arzt, E.: Effects of contact shape on the scaling of biological attachments. Proc. Math. Phys. Eng. Sci. 461, 305 (2005).Google Scholar
11.Hui, C.Y., Glassmaker, N.J., Tang, T., and Jagota, A.: Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J. R. Soc. Interface 1, 35 (2004).CrossRefGoogle ScholarPubMed
12.Spuskanyuk, A.V., McMeeking, R.M., Deshpande, V.S., and Arzt, E.: The effect of shape on the adhesion of fibrillar surfaces. Acta. Biomater. 4, 1669 (2008).CrossRefGoogle ScholarPubMed
13.Rong, R. and Hui, C.Y.: The effect of preload on the pull-off force in indentation tests on microfiber arrays. Proc. R. Soc. A 465, 961 (2009).Google Scholar
14.Glassmaker, N.J., Jagota, A., Hui, C.Y., Noderer, W.L., and Chaudhury, M.K.: Biologically inspired crack trapping for enhanced adhesion. Proc. Natl. Acad. Sci. USA 104, 10786 (2007).CrossRefGoogle ScholarPubMed
15.Glassmaker, N.J., Jagota, A., Hui, C.Y., and Kim, J.: Design of biomimetic fibrillar interfaces: 1. Making contact. J. R. Soc. Interface 1, 23 (2004).Google ScholarPubMed
16.Crosby, A.J., Hageman, M., and Duncan, A.: Controlling polymer adhesion with “Pancakes”. Langmuir 21, 11738 (2005).CrossRefGoogle ScholarPubMed
17.Vajpayee, S., Jagota, A., and Hui, C.Y.: Model independent extraction of adhesion energy from indentation experiments. J. Adhes. Sci. Technol. 86, 39 (2010).Google Scholar
18.Murphy, M.P., Aksak, B., and Sitti, M.: Gecko-inspired directional and controllable adhesion. Small 5, 170 (2009).CrossRefGoogle ScholarPubMed
19.Kim, S. and Sitti, M.: Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl. Phys. Lett. 89, 261911 (2006).CrossRefGoogle Scholar
20.Lee, J., Bush, B., Maboudian, R., and Fearing, R.S.: Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir 25, 12449 (2009).CrossRefGoogle ScholarPubMed
21.Paretkar, D., Kamperman, M., Schneider, A.S., Martina, D., Creton, C., and Arzt, E.: Bio-inspired pressure actuated adhesive system. Mater. Sci. Eng. C 31, 1152 (2011).CrossRefGoogle Scholar
22.McMeeking, R.M., Arzt, E., and Evans, A.G.: Defect dependent adhesion of fibrillar surfaces. J. Adhes. Sci. Technol. 84, 675 (2008).Google Scholar
23.Hui, C.Y., Jagota, A., Shen, L., Rajan, A., Glassmaker, N., and Tang, T.: Design of bio-inspired fibrillar interfaces for contact and adhesion — theory and experiments. J. Adhes. Sci. Technol. 21, 1259 (2007).CrossRefGoogle Scholar
24.Kim, S., Sitti, M., Hui, C.Y., Rong, R., and Jagota, A.: Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays. Appl. Phys. Lett. 91, 161905 (2007).Google Scholar
25.Rong, R., Hui, C.Y., Kim, S., and Sitti, M.: Modeling the soft backing layer thickness effect on adhesion of elastic microfiber arrays. J. Appl. Phys. 104, 044301 (2008).Google Scholar