Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T16:58:03.108Z Has data issue: false hasContentIssue false

Efficiency enhanced solar cells with a Cu2O homojunction grown epitaxially on p-Cu2O:Na sheets by electrochemical deposition

Published online by Cambridge University Press:  27 September 2016

Tadatsugu Minami*
Affiliation:
Optoelectronic Device System R&D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan
Jouji Yamazaki
Affiliation:
Optoelectronic Device System R&D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan
Toshihiro Miyata
Affiliation:
Optoelectronic Device System R&D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan
*
Address all correspondence to at Tadatsugu Minami at minami@neptune.kanazawa-it.ac.jp
Get access

Abstract

The Cu2O homojunction was formed by epitaxially growing a manganese-doped Cu2O (Cu2O:Mn) thin film on thermally oxidized polycrystalline p-type sodium-doped Cu2O (p-Cu2O:Na) sheets by electrochemical deposition. A significant improvement of photovoltaic properties was achieved in solar cells fabricated by inserting a Cu2O:Mn thin film between an Al-doped ZnO (AZO) transparent electrode and p-Cu2O:Na sheets. The photovoltaic properties obtained in AZO/Cu2O:Mn/p-Cu2O:Na solar cells were controlled by changing the Mn content doped into the Cu2O:Mn thin film. An efficiency of 4.21% was obtained in an AZO/Cu2O:Mn/p-Cu2O:Na solar cell fabricated with a Cu2O:Mn thin film that was identified as an i-type semiconductor.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Minami, T., Nishi, Y., Miyata, T., and Nomoto, J.: High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets. Appl. Phys. Express 4, 062301 (2011).Google Scholar
2. Lee, Y.S., Heo, J., Siah, S.C., Mailoa, J.P., Brandt, R.E., Kim, S.B., Gordon, R.G., and Buonassisi, T.: Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy Environ. Sci. 6, 2112 (2013).Google Scholar
3. Minami, T., Nishi, Y., and Miyata, T.: High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as N-Type layer. Appl. Phys. Express 6, 044101 (2013).Google Scholar
4. Lee, S.W., Lee, Y.S., Heo, J., Siah, S.C., Chua, D., Brandt, R.E., Kim, S.B., Mailoa, J.P., Buonassisi, T., and Gordon, R.G.: Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction. Adv. Energy Mater. 4, 1301916 (2014).CrossRefGoogle Scholar
5. Lee, Y.S., Chua, D., Brandt, R.E., Siah, S.C., Li, J.V., Mailoa, J.P., Lee, S.W., Gordon, R.G., and Buonassisi, T.: Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv. Mater. 26, 4704 (2014).Google Scholar
6. Minami, T., Nishi, Y., and Miyata, T.: Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet. Appl. Phys. Express 8, 022301 (2015).Google Scholar
7. Ievskaya, Y., Hoye, R.L.Z., Sadhanala, A., Musselman, K.P., and MacManus-Driscoll, J.L.: Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: improved interface quality and solar cell performance. Sol. Energy Mater. Sol. Cells, 135, 43 (2015).Google Scholar
8. Hoye, R.L.Z., Brandt, R.E., Ievskaya, Y., Heffernan, S., Musselman, K.P., Buonassisi, T., and MacManus-Driscoll, J.L.: Perspective: maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells. APL Mater. 3, 020901 (2015).Google Scholar
9. Minami, T., Nishi, Y., and Miyata, T.: Efficiency enhancement using a Zn1−xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Appl. Phys. Express 9, 052301 (2016).CrossRefGoogle Scholar
10. Minami, T., Miyata, T., and Nishi, Y.: Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure. Sol. Energy 105, 206 (2014).CrossRefGoogle Scholar
11. Minami, T., Nishi, Y., and Miyata, T.: Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells. Thin Solid Films, 549, 65 (2013).Google Scholar
12. Minemoto, T., Matsui, T., Takakura, H., Hamakawa, Y., Negami, T., Hashimoto, Y., Uenoyama, T., and Kitagawa, M.: Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Sol. Energy Mater. Sol. Cells 67, 83 (2001).Google Scholar
13. Takiguchi, Y. and Miyajima, S.: Device simulation of cuprous oxide heterojunction solar cells. Jpn. J. Appl. Phys. 54, 112303 (2015).CrossRefGoogle Scholar
14. Wang, L. and Tao, M.: Fabrication and characterization of p-n homojunctions in cuprous oxide by electrochemical deposition. Electrochem. Solid-State Lett. 10, H248 (2007).Google Scholar
15. McShane, C.M., Siripala, W.P., and Choi, K.S.: Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells. J. Phys. Chem. Lett. 1, 2666 (2010).Google Scholar
16. Wei, H.M., Gong, H.B., Chen, L., Zi, M., and Cao, B.Q.: Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J. Phys. Chem. C 116, 10510 (2012).Google Scholar
17. McShane, C.M. and Choi, K.S.: Junction studies on electrochemically fabricated p–n Cu2O homojunction solar cells for efficiency enhancement. Phys. Chem. Chem. Phys. 14, 6112 (2012).Google Scholar
18. Minami, T., Nishi, Y., and Miyata, T.: Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications. Appl. Phys. Lett. 105, 212104 (2014).Google Scholar
19. Bai, Q., Wang, W., Zhang, Q., and Tao, M.: n-type doping in Cu2O with F, Cl, and Br: a first-principles study. J. Appl. Phys. 111, 023709 (2012).Google Scholar
20. Cai, X.M., Su, X.Q., Ye, F., Wang, H., Tian, X.Q., Zhang, D.P., Fan, P., Luo, J.T., Zheng, Z.H., Liang, G.X., and Roy, V.A.L.: The n-type conduction of indium-doped Cu2O thin films fabricated by direct current magnetron co-sputtering. Appl. Phys. Lett. 107, 083901 (2015).CrossRefGoogle Scholar
21. Wang, W., Wu, D., Zhang, Q., Wang, L., and Tao, M.: pH-dependence of conduction type in cuprous oxide synthesized from solution. J. Appl. Phys. 107, 123717 (2010).Google Scholar
22. Meyer, B.K., Polity, A., Reppin, D., Becker, M., Hering, P., Kramm, B., Klar, P.J., Sander, T., Reindl, C., Heiliger, C., Heinemann, M., Müller, C., and Ronning, C.: In Semiconductors and Semimetals, edited by Svensson, B.G., Pearton, S.J., and Jagadish, C. (Elsevier Inc., 88, USA, 2013), pp. 201226.Google Scholar
23. Minami, T., Nishi, Y., and Miyata, T.: Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells. Sol. Energy Mater. Sol. Cells, 147, 85 (2016).CrossRefGoogle Scholar