Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T14:38:13.271Z Has data issue: false hasContentIssue false

Circular dichroism in the interband transitions of achiral metal nanoparticles: TiN and noble metals

Published online by Cambridge University Press:  19 March 2018

Jong-Won Park*
Affiliation:
Department of Chemistry and The Photonics Center, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
*
Address all correspondence to Jong-Won Park at jwonpark@bu.edu
Get access

Abstract

A longitudinal field component parallel to the wave vector is generally considered in nonlocal optical response. Longitudinal volume plasmons accompanied by inhomogeneous internal field optically break symmetry for isotropic metal nanoparticles. Here, natural circular dichroism in the interband transitions of TiN nanocubes, Au nanospheres, and Cu nanospheres in solution is presented. A field gradient or volume plasmons exert an electric force and consequently Lorentz force on bound valence-band electrons inside the nanoparticles. It is generalized that interband transitions in nanoparticles intrinsically produce a positive rotational strength and optical right-handedness. Electromechanical chiralty is introduced to explain the optical activity of achiral nanoparticles.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Mechanical Engineering, Texas Tech University, Box 41021, Lubbock, Texas 79409, USA

References

1.Wagnière, G.H.: On Chirality and the Universal Asymmetry (VHCA & Wiley-VCH, Zürich, 2007).Google Scholar
2.Mukhina, M.V., Maslov, V.G., Baranov, A.V., Fedorov, A.V., Orlova, A.O., Purcell-Milton, F., Govan, J., and Gun'ko, Y.K.: Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 15, 2844 (2015).CrossRefGoogle ScholarPubMed
3.Okuda, T., and Kimura, A.: Spin- and angle-resolved photoemission of strongly spin-orbit coupled systems. J. Phys. Soc. Jpn. 82, 021002 (2013).Google Scholar
4.Bohren, C.F.: Light scattering by an optically active sphere. Chem. Phys. Lett. 29, 458 (1974).CrossRefGoogle Scholar
5.Park, J.-W.: Observation of intrinsic chirality of surface plasmon resonances in single nanocrystals. arXiv:1803.00547 [cond-mat.mes-hall].Google Scholar
6.Hopfield, J.J., and Thomas, D.G.: Theoretical and experimental effects of spatial dispersion on the optical properties of crystals. Phys. Rev. 132, 563 (1963).Google Scholar
7.Shokhovets, S., Ambacher, O., Meyer, B.K., and Gobsch, G.: Anisotropy of the momentum matrix element, dichroism, and conduction-band dispersion relation of wurtzite semiconductors. Phys. Rev. B 78, 035207 (2008).Google Scholar
8.Mineev, V.P., and Yoshioka, Yu.: Optical activity of noncentrosymmetric metals. Phys. Rev. B 81, 094525 (2010).Google Scholar
9.Agranovich, V.M., and Ginzburg, V.L.: Spatial Dispersion in Crystal Optics and the Theory of Excitons (Interscience Publishers, London, 1966).Google Scholar
10.Mason, S.F.: Molecular Optical Activity and the Chiral Discriminations (Cambridge Univ. Press, Cambridge, 1982).Google Scholar
11.Wysin, G.M., Chikan, V., Young, N., and Dani, R.K.: Effects of interband transitions on Faraday rotation in metallic nanoparticles. J. Phys.: Condens. Matter 25, 325302 (2013).Google Scholar
12.Cameron, R.P., Götte, J.B., Barnett, S.M., and Yao, A.M.: Chirality and the angular momentum of light. Phil. Trans. R. Soc. A 375, 20150433 (2017).CrossRefGoogle ScholarPubMed
13.Kuhn, W.: The physical significance of optical rotatory power. Trans. Faraday Soc. 26, 293 (1930).Google Scholar
14.Bekshaev, A.Ya., Angelsky, O.V., Hanson, S.G., and Zenkova, C.Yu.: Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A 86, 023847 (2012).CrossRefGoogle Scholar
15.Vuong, L.T., Adam, A.J.L., Brok, J.M., Planken, P.C.M., and Urbach, H.P.: Electromagnetic spin-orbit interactions via scattering of subwavelength apertures. Phys. Rev. Lett. 104, 083903 (2010).Google Scholar
16.Kang, M., Guo, Q.-H., Chen, J., Gu, B., Li, Y., and Wang, H.-T.: Near-field phase singularity in subwavelength metallic microstructures. Phys. Rev. A 84, 045803 (2011).CrossRefGoogle Scholar
17.Chimento, P.F., Alkemade, P.F.A., 't Hooft, G.W., and Eliel, E.R.: Optical angular momentum conversion in a nanoslit. Opt. Lett. 37, 4946 (2012).Google Scholar
18.Wang, Z.B., Luk'yanchuk, B.S., Hong, M.H., Lin, Y., and Chong, T.C.: Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B 70, 035418 (2004).Google Scholar
19.Alù, A., and Engheta, N.: Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles. J. Opt. Soc. Am. B 24, A89 (2007).Google Scholar
20.Quinteiro, G.F., Schmidt-Kaler, F., and Schmiegelow, C.T.: Twisted-light–ion interaction: the role of longitudinal fields. Phys. Rev. Lett. 119, 253203 (2017).CrossRefGoogle ScholarPubMed
21.Afanasev, A., Carlson, C.E., and Solyanik, M.: Circular dichroism of twisted photons in non-chiral atomic matter. J. Opt. 19, 105401 (2017).Google Scholar
22.Singh, N.D., Moocarme, M., Edelstein, B., Punnoose, N., and Vuong, L.T.: Anomalously-large photo-induced magnetic response of metallic nanocolloids in aqueous solution using a solar simulator. Opt. Express 20, 19214 (2012).Google Scholar
23.Hertel, R.: Theory of the inverse Faraday effect in metals. J. Magn. Magn. Mater. 303, L1L4 (2006).Google Scholar
24.Hertel, R., and Fähnle, M.: Macroscopic drift current in the inverse Faraday effect. Phys. Rev. B 91, 020411(R) (2015).Google Scholar
25.McMahon, J.M., Gray, S.K., and Schatz, G.C.: Nonlocal optical response of metal nanostructures with arbitrary shape. Phys. Rev. Lett. 103, 097403 (2009).CrossRefGoogle ScholarPubMed
26.Adachi, S., and Takahashi, M.: Optical properties of TiN films deposited by direct current reactive sputtering. J. Appl. Phys. 87, 1264 (2000).CrossRefGoogle Scholar
27.Gu, Y., and Kornev, K.G.: Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites. J. Opt. Soc. Am. B 27, 2165 (2010).Google Scholar
28.Durach, M., and Noginova, N.: Spin angular momentum transfer and plasmogalvanic phenomena. Phys. Rev. B 96, 195411 (2017).CrossRefGoogle Scholar
29.Kontani, H., Tanaka, T., Hirashima, D.S., Yamada, K., and Inoue, J.: Giant orbital hall effect in transition metals: origin of large spin and anomalous hall effects. Phys. Rev. Lett. 102, 016601 (2009).Google Scholar
30.van Bree, J., Silov, A.Yu., Koenraad, P.M., and Flatté, M.E.: Spin-orbit-induced circulating currents in a semiconductor nanostructure. Phys. Rev. Lett. 112, 187201 (2014).Google Scholar
Supplementary material: PDF

Park supplementary material

Park supplementary material 1

Download Park supplementary material(PDF)
PDF 476.2 KB