Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T18:50:16.900Z Has data issue: false hasContentIssue false

Catalysts in metal–air batteries

Published online by Cambridge University Press:  12 April 2018

Qi Dong
Affiliation:
Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon St., Chestnut Hill, MA 02467, USA
Dunwei Wang*
Affiliation:
Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon St., Chestnut Hill, MA 02467, USA
*
Address all correspondence to Dunwei Wang at dunwei.wang@bc.edu
Get access

Abstract

Metal–air batteries promise higher energy densities than state-of-the-art Li-ion batteries and have, therefore, received significant research attention lately. The most distinguishing feature of this technology is that it takes advantage of reversible conversion reactions of O2 or other air components (such as N2 or CO2) at the cathode. To promote these reactions, catalysts are often needed. A large number of materials have been studied for this purpose. In the present paper, we discuss the roles played by catalysts in metal–air battery systems. In particular, we choose to focus the discussions on the Li–O2 batteries as they are most intensely studied in the literature. Within this context, catalysts are often shown effective to facilitate the oxygen (O2) reduction reactions and/or O2 evolution reactions. The overall cell performance as measured by the round-trip efficiencies and charge/discharge rates can be significantly improved by the incorporation of catalysts. However, the presence of catalysts is also found to complicate the chemical reactions as they often exhibit activities toward parasitic chemical reactions such as electrolyte and electrode decompositions. The issue is especially acute in aprotic Li–O2 batteries, where organic electrolytes and reactive O2 species are mixed. In addition to heterogeneous catalysts, we also discuss the roles played by homogeneous catalysts as redox mediators, which are effective to promote redox reactions that are critical to energy storage applications.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Whittingham, M.S.: Electrical energy-storage and intercalation chemistry. Science 192, 1126 (1976).CrossRefGoogle ScholarPubMed
2.Lu, Y.C., Gallant, B.M., Kwabi, D.G., Harding, J.R., Mitchell, R.R., Whittingham, M.S., and Shao-Horn, Y.: Lithium-oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750 (2013).CrossRefGoogle Scholar
3.Zu, C.X. and Li, H.: Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614 (2011).CrossRefGoogle Scholar
4.Yuan, L.X., Wang, Z.H., Zhang, W.X., Hu, X.L., Chen, J.T., Huang, Y.H., and Goodenough, J.B.: Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4, 269 (2011).CrossRefGoogle Scholar
5.Akhtar, M.A., Sharma, V., Biswasa, S., and Chandra, A.: Tuning porous nanostructures of MnCo2O4 for application in supercapacitors and catalysis. RSC Adv. 6, 96296 (2016).CrossRefGoogle Scholar
6.Alhabeb, M., Beidaghi, M., Van Aken, K.L., Dyatkin, B., and Gogotsi, Y.: High-density freestanding graphene/carbide-derived carbon film electrodes for electrochemical capacitors. Carbon N. Y. 118, 642 (2017).CrossRefGoogle Scholar
7.Sharma, V., Singh, I., and Chandra, A.: Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Sci. Rep. 8, 1307 (2018).CrossRefGoogle ScholarPubMed
8.Navarro-Suarez, A.M., Van Aken, K.L., Mathis, T., Makaryan, T., Yan, J., Carretero-Gonzalez, J., Rojo, T., and Gogotsi, Y.: Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochim. Acta 259, 752 (2018).CrossRefGoogle Scholar
9.Sumi, H., Yamaguchi, T., Shimada, H., Fujishiro, Y., and Awano, M.: Internal partial oxidation reforming of butane and steam reforming of ethanol for anode-supported microtubular solid oxide fuel cells. Fuel Cells 17, 875 (2017).CrossRefGoogle Scholar
10.Kirubakaran, A., Jain, S., and Nema, R.K.: A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13, 2430 (2009).CrossRefGoogle Scholar
11.Lu, J., Li, L., Park, J.B., Sun, Y.K., Wu, F., and Amine, K.: Aprotic and aqueous Li-O2 batteries. Chem. Rev. 114, 5611 (2014).CrossRefGoogle ScholarPubMed
12.Black, R., Adams, B., and Nazar, L.F.: Non-aqueous and hybrid Li-O2 batteries. Adv. Energy Mater. 2, 801 (2012).CrossRefGoogle Scholar
13.Li, Y.G. and Dai, H.J.: Recent advances in zinc-air batteries. Chem. Soc. Rev. 43, 5257 (2014).CrossRefGoogle ScholarPubMed
14.Cheng, F.Y. and Chen, J.: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012).CrossRefGoogle ScholarPubMed
15.Wang, Z.L., Xu, D., Xu, J.J., and Zhang, X.B.: Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43, 7746 (2014).CrossRefGoogle ScholarPubMed
16.Cao, R., Lee, J.S., Liu, M.L., and Cho, J.: Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2, 816 (2012).CrossRefGoogle Scholar
17.Li, Y.G. and Lu, J.: Metal air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2, 1370 (2017).CrossRefGoogle Scholar
18.Zhang, X., Wang, X., Xie, Z., and Zhou, Z.: Recent progress in rechargeable alkali metal-air batteries. Green Energy Environ. 1, 4 (2016).CrossRefGoogle Scholar
19.Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I.B., Nørskov, J.K., and Jaramillo, T.F.: Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 146 (2017).CrossRefGoogle ScholarPubMed
20.Luntz, A.C. and McCloskey, B.D.: Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721 (2014).CrossRefGoogle ScholarPubMed
21.Yao, X.H., Dong, Q., Cheng, Q.M., and Wang, D.W.: Why do lithium-oxygen batteries fail: parasitic chemical reactions and their synergistic effect. Angew. Chem. Int. Ed. 55, 11344 (2016).CrossRefGoogle ScholarPubMed
22.Yu, W., Lau, K.C., Lei, Y., Liu, R.L., Qin, L., Yang, W., Li, B.H., Curtiss, L.A., Zhai, D.Y., and Kang, F.Y.: Dendrite-free potassium-oxygen battery based on a liquid alloy anode. ACS Appl. Mater. Interfaces 9, 31871 (2017).CrossRefGoogle ScholarPubMed
23.Yadegari, H., Sun, Q., and Sun, X.L.: Sodium-oxygen batteries: a comparative review from chemical and electrochemical fundamentals to future perspective. Adv. Mater. 28, 7065 (2016).CrossRefGoogle ScholarPubMed
24.Dong, Q., Yao, X.H., Luo, J.R., Zhang, X.Z., Hwang, H.J., and Wang, D.W.: Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators. Chem. Commun. 52, 13753 (2016).CrossRefGoogle Scholar
25.McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., and Luntz, A.C.: Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161 (2011).CrossRefGoogle ScholarPubMed
26.McCloskey, B.D. and Addison, D.: A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li-O2 batteries. ACS Catal. 7, 772 (2017).CrossRefGoogle Scholar
27.Thotiyl, M.M.O., Freunberger, S.A., Peng, Z.Q., and Bruce, P.G.: The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 135, 494 (2013).CrossRefGoogle Scholar
28.Lu, Y.C., Gasteiger, H.A., and Shao-Horn, Y.: Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J. Am. Chem. Soc. 133, 19048 (2011).CrossRefGoogle ScholarPubMed
29.Lu, Y.C., Gasteiger, H.A., Parent, M.C., Chiloyan, V., and Shao-Horn, Y.: The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid State Lett. 13, A69 (2010).CrossRefGoogle Scholar
30.McCloskey, B.D., Scheffler, R., Speidel, A., Bethune, D.S., Shelby, R.M., and Luntz, A.C.: On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 133, 18038 (2011).CrossRefGoogle ScholarPubMed
31.Gittleson, F.S., Ryu, W.H., Schwab, M., Tong, X., and Taylor, A.D.: Pt and Pd catalyzed oxidation of Li2O2 and DMSO during Li-O2 battery charging. Chem. Commun. 52, 6605 (2016).CrossRefGoogle ScholarPubMed
32.Ma, S.C., Wu, Y., Wang, J.W., Zhang, Y.L., Zhang, Y.T., Yan, X.X., Wei, Y., Liu, P., Wang, J.P., Jiang, K.L., Fan, S.S., Xu, Y., and Peng, Z.Q.: Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett. 15, 8084 (2015).CrossRefGoogle ScholarPubMed
33.Xie, J., Yao, X.H., Cheng, Q.M., Madden, I.P., Dornath, P., Chang, C.C., Fan, W., and Wang, D.W.: Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode. Angew. Chem. Int. Ed. 54, 4299 (2015).CrossRefGoogle ScholarPubMed
34.Liao, K.M., Zhang, T., Wang, Y.Q., Li, F.J., Jian, Z.L., Yu, H.J., and Zhou, H.S.: Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. ChemSusChem 8, 1429 (2015).CrossRefGoogle ScholarPubMed
35.Xie, J., Yao, X.H., Madden, I.P., Jiang, D.E., Chou, L.Y., Tsung, C.K., and Wang, D.W.: Selective deposition of Ru nanoparticles on TiSi2 nanonet and its utilization for Li2O2 formation and decomposition. J. Am. Chem. Soc. 136, 8903 (2014).CrossRefGoogle ScholarPubMed
36.Lu, J., Lee, Y.J., Luo, X.Y., Lau, K.C., Asadi, M., Wang, H.H., Brombosz, S., Wen, J.G., Zhai, D.Y., Chen, Z.H., Miller, D.J., Jeong, Y.S., Park, J.B., Fang, Z.Z., Kumar, B., Salehi-Khojin, A., Sun, Y.K., Curtiss, L.A., and Amine, K.: A lithium-oxygen battery based on lithium superoxide. Nature 529, 377 (2016).CrossRefGoogle ScholarPubMed
37.Papp, J.K., Forster, J.D., Burke, C.M., Kim, H.W., Luntz, A.C., Shelby, R.M., Urban, J.J., and McCloskey, B.D.: Poly(vinylidene fluoride) (PVDF) binder degradation in Li-O2 batteries: a consideration for the characterization of lithium superoxide. J. Phys. Chem. Lett. 8, 1169 (2017).CrossRefGoogle Scholar
38.Debart, A., Paterson, A.J., Bao, J., and Bruce, P.G.: α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521 (2008).CrossRefGoogle ScholarPubMed
39.Lu, J., Qin, Y., Du, P., Luo, X.Y., Wu, T.P., Ren, Y., Wen, J.G., Miller, D.J., Miller, J.T., and Amine, K.: Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li-O2 batteries. RSC Adv. 3, 8276 (2013).CrossRefGoogle Scholar
40.Yao, X.H., Cheng, Q.M., Xie, J., Dong, Q., and Wang, D.W.: Functionalizing titanium disilicide nanonets with cobalt oxide and palladium for stable Li oxygen battery operations. ACS Appl. Mater. Interfaces 7, 21948 (2015).CrossRefGoogle ScholarPubMed
41.Jian, Z.L., Liu, P., Li, F.J., He, P., Guo, X.W., Chen, M.W., and Zhou, H.S.: Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem. Int. Ed. 53, 442 (2014).CrossRefGoogle Scholar
42.Li, F.J., Tang, D.M., Zhang, T., Liao, K.M., He, P., Golberg, D., Yamada, A., and Zhou, H.S.: Superior performance of a Li-O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode. Adv. Energy. Mater. 5, 1150294 (2015).CrossRefGoogle Scholar
43.Fu, Z.H., Lin, X.J., Huang, T., and Yu, A.S.: Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries. J. Solid State Electrochem. 16, 1447 (2012).CrossRefGoogle Scholar
44.Xie, J., Dong, Q., Madden, I., Yao, X.H., Cheng, Q.M., Dornath, P., Fan, W., and Wang, D.W.: Achieving low overpotential Li-O2 battery operations by Li2O2 decomposition through one-electron processes. Nano Lett. 15, 8371 (2015).CrossRefGoogle ScholarPubMed
45.McCloskey, B.D., Valery, A., Luntz, A.C., Gowda, S.R., Wallraff, G.M., Garcia, J.M., Mori, T., and Krupp, L.E.: Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 4, 2989 (2013).CrossRefGoogle ScholarPubMed
46.Li, F.J., Ohnishi, R., Yamada, Y., Kubota, J., Domen, K., Yamada, A., and Zhou, H.S.: Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li-O2 batteries. Chem. Commun. 49, 1175 (2013).CrossRefGoogle ScholarPubMed
47.Kundu, D., Black, R., Adams, B., Harrison, K., Zavadil, K., and Nazar, L.F.: Nanostructured metal carbides for aprotic Li-O2 batteries: new insights into interfacial reactions and cathode stability. J. Phys. Chem. Lett. 6, 2252 (2015).CrossRefGoogle ScholarPubMed
48.Abraham, K.M. and Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1 (1996).CrossRefGoogle Scholar
49.Shui, J.L., Karan, N.K., Balasubramanian, M., Li, S.Y., and Liu, D.J.: Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. J. Am. Chem. Soc. 134, 16654 (2012).CrossRefGoogle ScholarPubMed
50.Guo, D.H., Shibuya, R., Akiba, C., Saji, S., Kondo, T., and Nakamura, J.: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361 (2016).CrossRefGoogle ScholarPubMed
51.Cao, X.C., Wu, J., Jin, C., Tian, J.H., Strasser, P., and Yang, R.Z.: MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li-O2 batteries. ACS Catal. 5, 4890 (2015).CrossRefGoogle Scholar
52.Luo, J.R., Yao, X.H., Yang, L., Han, Y., Chen, L., Geng, X.M., Vattipalli, V., Dong, Q., Fan, W., Wang, D.W., and Zhu, H.L.: Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 10, 9 (2017).CrossRefGoogle Scholar
53.Zhang, Y.H., Chen, Y.B., Zhou, K.G., Liu, C.H., Zeng, J., Zhang, H.L., and Peng, Y.: Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20, 185504 (2009).CrossRefGoogle ScholarPubMed
54.McCloskey, B.D., Speidel, A., Scheffler, R., Miller, D.C., Viswanathan, V., Hummelshoj, J.S., Norskov, J.K., and Luntz, A.C.: Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 3, 997 (2012).CrossRefGoogle ScholarPubMed
55.Kundu, S., Wang, Y.M., Xia, W., and Muhler, M.: Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J. Phys. Chem. C 112, 16869 (2008).CrossRefGoogle Scholar
56.Lu, J., Lei, Y., Lau, K.C., Luo, X.Y., Du, P., Wen, J.G., Assary, R.S., Das, U., Miller, D.J., Elam, J.W., Albishri, H.M., Abd El-Hady, D., Sun, Y.K., Curtiss, L.A., and Amine, K.: A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).CrossRefGoogle ScholarPubMed
57.Chen, Y.H., Freunberger, S.A., Peng, Z.Q., Fontaine, O., and Bruce, P.G.: Charging a Li-O2 battery using a redox mediator. Nat. Chem. 5, 489 (2013).CrossRefGoogle ScholarPubMed
58.Feng, N.N., He, P., and Zhou, H.S.: Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery. ChemSusChem 8, 600 (2015).CrossRefGoogle ScholarPubMed
59.Gao, X.W., Chen, Y.H., Johnson, L., and Bruce, P.G.: Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882 (2016).CrossRefGoogle ScholarPubMed
60.Bergner, B.J., Schurmann, A., Peppler, K., Garsuch, A., and Janek, J.: TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 136, 15054 (2014).CrossRefGoogle ScholarPubMed
61.Shiga, T., Hase, Y., Yagi, Y., Takahashi, N., and Takechi, K.: Catalytic cycle employing a TEMPO-anion complex to obtain a secondary Mg-O2 battery. J. Phys. Chem. Lett. 5, 1648 (2014).CrossRefGoogle ScholarPubMed
62.Lacey, M.J., Frith, J.T., and Owen, J.R.: A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem. Commun. 26, 74 (2013).CrossRefGoogle Scholar
63.Matsuda, S., Mori, S., Hashimoto, K., and Nakanishi, S.: Transition metal complexes with macrocyclic ligands serve as efficient electrocatalysts for aprotic oxygen evolution on Li2O2. J. Phys. Chem. C 118, 28435 (2014).CrossRefGoogle Scholar
64.Sun, D., Shen, Y., Zhang, W., Yu, L., Yi, Z.Q., Yin, W., Wang, D., Huang, Y.H., Wang, J., Wang, D.L., and Goodenough, J.B.: A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 136, 8941 (2014).CrossRefGoogle ScholarPubMed
65.Lim, H.D., Song, H., Kim, J., Gwon, H., Bae, Y., Park, K.Y., Hong, J., Kim, H., Kim, T., Kim, Y.H., Lepro, X., Ovalle-Robles, R., Baughman, R.H., and Kang, K.: Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926 (2014).CrossRefGoogle ScholarPubMed
66.Burke, C.M., Black, R., Kochetkov, I.R., Giordani, V., Addison, D., Nazar, L.F., and McCloskey, B.D.: Implications of 4 e oxygen reduction via iodide redox mediation in Li-O2 batteries. ACS Energy Lett. 1, 747 (2016).CrossRefGoogle Scholar
67.Tulodziecki, M., Leverick, G.M., Amanchukwu, C.V., Katayama, Y., Kwabi, D.G., Barde, F., Hammond, P.T., and Shao-Horn, Y.: The role of iodide in the formation of lithium hydroxide in lithium-oxygen batteries. Energy Environ. Sci. 10, 1828 (2017).CrossRefGoogle Scholar
68.Liu, T., Leskes, M., Yu, W.J., Moore, A.J., Zhou, L.N., Bayley, P.M., Kim, G., and Grey, C.P.: Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350, 530 (2015).CrossRefGoogle ScholarPubMed
69.Geng, D.S., Ding, N., Hor, T.S.A., Chien, S.W., Liu, Z.L., and Zong, Y.: Investigation on the cyclability of lithium-oxygen cells in a confined potential window using cathodes with pre-filled discharge products. Chem. Asian J. 10, 2182 (2015).CrossRefGoogle Scholar
70.Kwak, W.J., Hirshberg, D., Sharon, D., Afri, M., Frimer, A.A., Jung, H.G., Aurbach, D., and Sun, Y.K.: Li-O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ. Sci. 9, 2334 (2016).CrossRefGoogle Scholar
71.Liang, Z.J. and Lu, Y.C.: Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries. J. Am. Chem. Soc. 138, 7574 (2016).CrossRefGoogle ScholarPubMed
72.Lee, S.H., Kwak, W.J., and Sun, Y.K.: A new perspective of the ruthenium ion: a bifunctional soluble catalyst for high efficiency Li-O2 batteries. J. Mater. Chem. A 5, 15512 (2017).CrossRefGoogle Scholar
73.Ryu, W.H., Gittleson, F.S., Thomsen, J.M., Li, J.Y., Schwab, M.J., Brudvig, G.W., and Taylor, A.D.: Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat. Commun. 7, 12925 (2016).CrossRefGoogle ScholarPubMed
74.Guo, Z.Y., Dong, X.L., Yuan, S.Y., Wang, Y.G., and Xia, Y.Y.: Humidity effect on electrochemical performance of Li-O2 batteries. J. Power Sources 264, 1 (2014).CrossRefGoogle Scholar
75.Garcia, J.M., Horn, H.W., and Rice, J.E.: Dominant decomposition pathways for ethereal solvents in Li-O2 batteries. J. Phys. Chem. Lett. 6, 1795 (2015).CrossRefGoogle ScholarPubMed
76.Aetukuri, N.B., McCloskey, B.D., Garcia, J.M., Krupp, L.E., Viswanathan, V., and Luntz, A.C.: Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nat. Chem. 7, 50 (2015).CrossRefGoogle ScholarPubMed
77.Qiao, Y., Wu, S.C., Yi, J., Sun, Y., Guo, S.H., Yang, S.X., He, P., and Zhou, H.S.: From O2 to HO2: reducing by-products and overpotential in Li-O2 batteries by water addition. Angew. Chem. Int. Ed. 56, 4960 (2017).CrossRefGoogle ScholarPubMed
78.Zhu, Y.G., Liu, Q., Rong, Y.C., Chen, H.M., Yang, J., Jia, C.K., Yu, L.J., Karton, A., Ren, Y., Xu, X.X., Adams, S., and Wang, Q.: Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries. Nat. Commun. 8, 14308 (2017).CrossRefGoogle ScholarPubMed
79.Lee, D.J., Lee, H., Kim, Y.J., Park, J.K., and Kim, H.T.: Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode. Adv. Mater. 28, 857 (2016).CrossRefGoogle ScholarPubMed
80.Zhang, J.Q., Sun, B., Xie, X.Q., Zhao, Y.F., and Wang, G.X.: A bifunctional organic redox catalyst for rechargeable lithium-oxygen batteries with enhanced performances. Adv. Sci. 3, 1500285 (2016).CrossRefGoogle ScholarPubMed
81.Zhang, J.Q., Sun, B., Zhao, Y.F., Kretschmer, K., and Wang, G.X.: Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries. Angew. Chem. Int. Ed. 56, 8505 (2017).CrossRefGoogle Scholar
82.Kozen, A.C., Lin, C.F., Pearse, A.J., Schroeder, M.A., Han, X.G., Hu, L.B., Lee, S.B., Rubloff, G.W., and Noked, M.: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884 (2015).CrossRefGoogle ScholarPubMed
83.Zhang, T., Imanishi, N., Shimonishi, Y., Hirano, A., Takeda, Y., Yamamoto, O., and Sammes, N.: A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661 (2010).CrossRefGoogle ScholarPubMed
84.Guo, J.S., Hsu, A., Chu, D., and Chen, R.R.: Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J. Phys. Chem. C 114, 4324 (2010).CrossRefGoogle Scholar
85.Guo, S.J. and Sun, S.H.: FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 134, 2492 (2012).CrossRefGoogle ScholarPubMed
86.Wang, Y.G. and Zhou, H.S.: A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources 195, 358 (2010).CrossRefGoogle Scholar
87.Esswein, A.J., McMurdo, M.J., Ross, P.N., Bell, A.T., and Tilley, T.D.: Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068 (2009).CrossRefGoogle Scholar
88.Wang, L., Zhao, X., Lu, Y.H., Xu, M.W., Zhang, D.W., Ruoff, R.S., Stevenson, K.J., and Goodenough, J.B.: CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J. Electrochem. Soc. 158, A1379 (2011).CrossRefGoogle Scholar
89.Suntivich, J., Gasteiger, H.A., Yabuuchi, N., Nakanishi, H., Goodenough, J.B., and Shao-Horn, Y.: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3, 546 (2011).CrossRefGoogle ScholarPubMed
90.Yang, L.J., Jiang, S.J., Zhao, Y., Zhu, L., Chen, S., Wang, X.Z., Wu, Q., Ma, J., Ma, Y.W., and Hu, Z.: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50, 7132 (2011).CrossRefGoogle ScholarPubMed
91.Li, L.J., Chai, S.H., Dai, S., and Manthiram, A.: Advanced hybrid Li-air batteries with high-performance mesoporous nanocatalysts. Energy Environ. Sci. 7, 2630 (2014).CrossRefGoogle Scholar
92.Lim, H.D., Park, H., Kim, H., Kim, J., Lee, B., Bae, Y., Gwon, H., and Kang, K.: A new perspective on Li-SO2 batteries for rechargeable systems. Angew. Chem. Int. Ed. 54, 9663 (2015).CrossRefGoogle ScholarPubMed
93.Yang, S.X., Qiao, Y., He, P., Liu, Y.J., Cheng, Z., Zhu, J.J., and Zhou, H.S.: A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst. Energy Environ. Sci. 10, 972 (2017).CrossRefGoogle Scholar
94.Ma, J.L., Bao, D., Shi, M.M., Yan, J.M., and Zhang, X.B.: Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2, 525 (2017).CrossRefGoogle Scholar
95.Al Sadat, W.I. and Archer, L.A.: The O2-assisted Al/CO2 electrochemical cell: a system for CO2 capture/conversion and electric power generation. Sci. Adv. 2, e1600968 (2016).CrossRefGoogle ScholarPubMed
96.Hu, X.F., Sun, J.C., Li, Z.F., Zhao, Q., Chen, C.C., and Chen, J.: Rechargeable room-temperature Na-CO2 batteries. Angew. Chem. Int. Ed. 55, 6482 (2016).CrossRefGoogle ScholarPubMed
97.Li, C., Guo, Z.Y., Yang, B.C., Liu, Y., Wang, Y.G., and Xia, Y.Y.: A rechargeable Li-CO2 battery with a gel polymer electrolyte. Angew. Chem. Int. Ed. 56, 9126 (2017).CrossRefGoogle Scholar
98.Hou, Y.Y., Wang, J.Z., Liu, L.L., Liu, Y.Q., Chou, S.L., Shi, D.Q., Liu, H.K., Wu, Y.P., Zhang, W.M., and Chen, J.: Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 27, 1700564 (2017).CrossRefGoogle Scholar
99.Zhang, S.Y., Nava, M.J., Chow, G.K., Lopez, N., Wu, G., Britt, D.R., Nocera, D.G., and Cummins, C.C.: On the incompatibility of lithium-O2 battery technology with CO2. Chem. Sci. 8, 6117 (2017).CrossRefGoogle Scholar
100.Noked, M., Schroeder, M.A., Pearse, A.J., Rubloff, G.W., and Lee, S.B.: Protocols for evaluating and reporting Li-O2 cell performance. J. Phys. Chem. Lett. 7, 211 (2016).CrossRefGoogle ScholarPubMed