Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T17:15:51.976Z Has data issue: false hasContentIssue false

An integral equation based domain decomposition method for solving large-size substrate-supported aperiodic plasmonic array platforms

Published online by Cambridge University Press:  17 March 2016

Shifei Tao
Affiliation:
CEM and Physics Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA
Jierong Cheng
Affiliation:
CEM and Physics Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA
Hossein Mosallaei*
Affiliation:
CEM and Physics Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA
*
Address all correspondence to Hossein Mosallaei at hosseinm@ece.neu.edu
Get access

Abstract

We propose a surface integral equation simulation scheme which incorporates the integral equation fast Fourier transform accelerative algorithm and domain decomposition method. Such scheme provides efficient and accurate solutions for substrate-supported non-periodic plasmonic array platforms with large number of building blocks and complex element geometry. The effect of array defects can be systematically and successfully studied taking advantage of the considerable flexibility of the domain decomposition approach. The proposed model will be of great advantage for fast and accurate characterization of graded-pattern plasmonic materials and metasurfaces.

Type
Plasmonics, Photonics, and Metamaterials Prospective Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gramotnev, D.K. and Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83 (2010).Google Scholar
2. Sotiriou, G.A.: Biomedical applications of multifunctional plasmonic nanoparticles. Wires Nanomed. Nanobiotechnol. 5, 19 (2013).Google Scholar
3. Dong, P., Lin, Y., Deng, J., and Di, J.: Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors. ACS Appl. Mater. Interfaces 5, 2392 (2013).Google Scholar
4. Cheng, J. and Mosallaei, H.: Optical metasurfaces for beam scanning in space. Opt. Lett. 39, 2719 (2014).Google Scholar
5. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302 (1966).Google Scholar
6. Jin, J.M.: Finite Element Method in Electromagnetics (John Wiley & Sons, Hoboken, NJ, 2014).Google Scholar
7. Harrington, R.F. and Harrington, J.L.: Field Computation by Moment Methods (Oxford University Press, Oxford, 1996).Google Scholar
8. Chew, W.C., Michielssen, E., Song, J.M., and Jin, J.M.: Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, Inc., Norwood, MA, 2001).Google Scholar
9. Ergül, Ö. and Gürel, L.: Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems. IEEE Trans. Antennas Propag. 56, 2335 (2008).Google Scholar
10. Seo, S.M. and Lee, J.F.: A fast IE-FFT algorithm for solving PEC scattering problems. IEEE Trans. Magn. 41, 1476 (2005).Google Scholar
11. Börm, S., Grasedyck, L., and Hackbusch, W.: Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem. 27, 405 (2003).Google Scholar
12. Peng, Z., Rawat, V., and Lee, J.F.: One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. J. Comput. Phys. 229, 1181 (2010).Google Scholar
13. Wang, X., Peng, Z., Lim, K.H., and Lee, J.F.: Multisolver domain decomposition method for modeling EMC effects of multiple antennas on a large air platform. IEEE Trans. EMC 54, 375 (2012).Google Scholar
14. Peng, Z., Wang, X.C., and Lee, J.F.: Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects. IEEE Trans. Antennas Propag. 59, 3328 (2011).Google Scholar
15. Jiang, M., Hu, J., Tian, M., Zhao, R., Wei, X., and Nie, Z.: Solving scattering by multilayer dielectric objects using JMCFIE–DDM–MLFMA. IEEE Antennas Wirel. Propag. Lett. 13, 1132 (2014).Google Scholar
16. Esquius-Morote, M., Gomez-Diaz, J.S., and Perruisseau-Carrier, J.: Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. Terahertz Sci. Technol. 4, 116 (2014).CrossRefGoogle Scholar
17. Jun, Y.C., Gonzales, E., Reno, J.L., Shaner, E.A., Gabbay, A., and Brener, I.: Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt. Express 20, 1903 (2012).Google Scholar
18. Ansari-Oghol-Beig, D. and Mosalaei, H.: Array IE-FFT solver for simulation of supercells and aperiodic penetrable metamaterials. J. Comput. Theor. Nanosci. 12, 3864 (2015).Google Scholar
19. Li, M.K. and Chew, W.C.: Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme. IEEE Trans. Antennas Propag. 56, 2389 (2008).Google Scholar
20. Northeastern University Research Computing. http://nuweb12.neu.edu/rc/?page_id=27.Google Scholar
21. Carvalho, L.M., Gratton, S., Lago, R., and Vasseur, X.: A flexible generalized conjugate residual method with inner orthogonalization and deflated restarting. SIAM J. Matrix Anal. Appl. 32, 1212 (2011).Google Scholar
22. Diroll, B.T., Gordon, T.R., Gaulding, E.A., Klein, D.R., Paik, T., Yun, H.J., Goodwin, E.D., Damodhar, D., Kagan, C.R., and Murray, C.B.: Synthesis of N-type plasmonic oxide nanocrystals and the optical and electrical characterization of their transparent conducting films. Chem. Mater. 26, 4579 (2014).Google Scholar
23. Gordon, T.R., Cargnello, M., Paik, T., Mangolini, F., Weber, R.T., Fornasiero, P., and Murray, C.B.: Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 134, 6751 (2012).Google Scholar
24. Ashcroft, N.W., Mermin, N.D., and Rodriguez, S.: Solid state physics. Am. J. Phys. 46, 116 (1978).Google Scholar
25. Caldwell, J.D., Glembock, O.J., Francescato, Y., Sharac, N., Giannini, V., Bezares, F.J., Long, J.P., Owrutsky, J.C., Vurgaftman, I., Tischler, J.G., Wheeler, V.D., Bassim, N.D., Shirey, L.M., Kasica, R., and Maier, S.A.: Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690 (2013).Google Scholar
26. Cheng, J., Wang, W.L., Mosallaei, H., and Kaxiras, E.: Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation. Nano Lett. 14, 50 (2013).Google Scholar