Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T14:40:33.589Z Has data issue: false hasContentIssue false

Impact of enhanced oxide reducibility on rates of solar-driven thermochemical fuel production

Published online by Cambridge University Press:  09 October 2017

Michael J. Ignatowich
Affiliation:
Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Alexander H. Bork
Affiliation:
ETH Zürich, Zürich 8093, Switzerland
Timothy C. Davenport
Affiliation:
Department of Materials Science, Northwestern University, Evanston, IL 60208, USA
Jennifer L. M. Rupp
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Chih-kai Yang
Affiliation:
Materials Science, California Institute of Technology, Pasadena, CA 91125, USA
Yoshihiro Yamazaki
Affiliation:
INAMORI Frontier Research Center, Kyushu University, Fukuoka 819-0395, Japan
Sossina M. Haile*
Affiliation:
Department of Materials Science, Northwestern University, Evanston, IL 60208, USA Materials Science, California Institute of Technology, Pasadena, CA 91125, USA
*
Address all correspondence to S. M. Haile at sossina.haile@northwestern.edu
Get access

Abstract

Two-step, solar-driven thermochemical fuel production offers the potential of efficient conversion of solar energy into dispatchable chemical fuel. Success relies on the availability of materials that readily undergo redox reactions in response to changes in environmental conditions. Those with a low enthalpy of reduction can typically be reduced at moderate temperatures, important for practical operation. However, easy reducibility has often been accompanied by surprisingly poor fuel production kinetics. Using the La1−x Sr x MnO3 series of perovskites as an example, we show that poor fuel production rates are a direct consequence of the diminished enthalpy. Thus, material development efforts will need to balance the countering thermodynamic influences of reduction enthalpy on fuel production capacity and fuel production rate.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kodama, T. and Gokon, N.: Thermochemical cycles for high-temperature solar hydrogen production. Chem. Rev. 107, 4048 (2007).CrossRefGoogle ScholarPubMed
2. Romero, M. and Steinfeld, A.: Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5, 9234 (2012).CrossRefGoogle Scholar
3. Agrafiotis, C., Roeb, M., and Sattler, C.: A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustainable Energy Rev. 42, 254 (2015).CrossRefGoogle Scholar
4. Chueh, W.C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S.M., and Steinfeld, A.: High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. Science 330, 1797 (2010).CrossRefGoogle ScholarPubMed
5. Chueh, W.C. and Haile, S.M.: A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Philos. Trans. R. Soc. London, Ser. A 368, 3269 (2010).Google ScholarPubMed
6. Chueh, W.C. and Haile, S.M.: Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2 . ChemSusChem 2, 735 (2009).CrossRefGoogle ScholarPubMed
7. Scheffe, J.R., Weibel, D., and Steinfeld, A.: Lanthanum–strontium–manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2 . Energy & Fuels 27, 4250 (2013).CrossRefGoogle Scholar
8. McDaniel, A.H., Miller, E.C., Arifin, D., Ambrosini, A., Coker, E.N., O'Hayre, R., Chueh, W.C., and Tong, J.H.: Sr- and Mn-doped LaAlO3−δ for solar thermochemical H2 and CO production. Energy Environ. Sci. 6, 2424 (2013).CrossRefGoogle Scholar
9. Yang, C.-K., Yamazaki, Y., Aydin, A., and Haile, S.M.: Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. J. Mater. Chem. A 2, 13612 (2014).CrossRefGoogle Scholar
10. Bork, A.H., Kubicek, M., Struzik, M., and Rupp, J.L.M.: Perovskite La0.6Sr0.4Cr1−xCoxO3−δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature. J. Mater. Chem. A 3, 15546 (2015).CrossRefGoogle Scholar
11. Galvez, M.E., Jacot, R., Scheffe, J., Cooper, T., Patzke, G., and Steinfeld, A.: Physico-chemical changes in Ca, Sr and Al-doped La-Mn-O perovskites upon thermochemical splitting of CO2 via redox cycling. Phys. Chem. Chem. Phys. 17, 6629 (2015).CrossRefGoogle ScholarPubMed
12. Dey, S. and Rao, C.N.R.: Splitting of CO2 by manganite perovskites to generate CO by solar isothermal redox cycling. ACS Energy Lett. 1, 237 (2016).CrossRefGoogle Scholar
13. Zhang, Z.K., Andre, L., and Abanades, S.: Experimental assessment of oxygen exchange capacity and thermochemical redox cycle behavior of Ba and Sr series perovskites for solar energy storage. Sol. Energy 134, 494 (2016).CrossRefGoogle Scholar
14. Cooper, T., Scheffe, J.R., Galvez, M.E., Jacot, R., Patzke, G., and Steinfeld, A.: Lanthanum manganite perovskites with Ca/Sr A-site and Al B-site doping as effective oxygen exchange materials for solar thermochemical fuel production. Energy Tech. 3, 1130 (2015).CrossRefGoogle Scholar
15. Takacs, M., Hoes, M., Caduff, M., Cooper, T., Scheffe, J.R., and Steinfeld, A.: Oxygen nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites with Ca/Sr A-site and Al B-site doping. Acta Mater.. 103, 700 (2016).CrossRefGoogle Scholar
16. Bork, A.H., Povoden-Karadeniz, E., and Rupp, J.L.M.: Modeling thermochemical solar-to-fuel conversion: CALPHAD for thermodynamic assessment studies of perovskites, exemplified for (La,Sr)MnO3 . Adv. Energy Mater. 7, 1601086 (2017).CrossRefGoogle Scholar
17. Panlener, R.J., Blumenthal, R.N., and Garnier, J.E.: Thermodynamic study of nonstoichiometric cerium dioxide. J. Phys. Chem. Solids 36, 1213 (1975).CrossRefGoogle Scholar
18. Demont, A., Abanades, S., and Beche, E.: Investigation of perovskite structures as oxygen-exchange redox materials for hydrogen production from thermochemical two-step water-splitting cycles. J. Phys. Chem. C 118, 12682 (2014).CrossRefGoogle Scholar
19. Venstrom, L.J., De Smith, R.M., Chandran, R.B., Boman, D.B., Krenzke, P.T., and Davidson, J.H.: Applicability of an equilibrium model to predict the conversion of CO2 to CO via the reduction and oxidation of a fixed bed of cerium dioxide. Energy & Fuels 29, 8168 (2015).CrossRefGoogle Scholar
20. Davenport, T.C., Yang, C.K., Kucharczyk, C.J., Ignatowich, M.J., and Haile, S.M.: Implications of exceptional material kinetics on thermochemical fuel production rates. Energy Tech. 4, 764 (2016).CrossRefGoogle Scholar
21. Davenport, T.C., Kemei, M., Ignatowich, M.J., and Haile, S.M.: Interplay of material thermodynamics and surface reaction rate on the kinetics of thermochemical hydrogen production. Int. J. Hydrogen Energy 42, 16932 (2017).CrossRefGoogle Scholar
22. Davenport, T.C., Yang, C.K., Kucharczyk, C.J., Ignatowich, M.J., and Haile, S.M.: Maximizing fuel production rates in isothermal solar thermochemical fuel production. Appl. Energy 183, 1098 (2016).CrossRefGoogle Scholar
23. Grundy, A.N., Chen, M., Hallstedt, B., and Gauckler, L.J.: Assessment of the La–Mn–O system. J. Phase Equil. Diff. 26, 131 (2005).CrossRefGoogle Scholar
24. Grundy, A.N., Povoden, E., Ivas, T., and Gauckler, L.J.: Calculation of defect chemistry using the CALPHAD approach. Calphad Comp. Coupl. Ph. Diagr. Thermochem. 30, 33 (2006).Google Scholar
25. Mizusaki, J., Mori, N., Takai, H., Yonemura, Y., Minamiue, H., Tagawa, H., Dokiya, M., Inaba, H., Naraya, K., Sasamoto, T., and Hashimoto, T.: Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1−x Sr x MnO3+δ . Solid State Ion. 129, 163 (2000).CrossRefGoogle Scholar
26. Meredig, B. and Wolverton, C.: First-principles thermodynamic framework for the evaluation of thermochemical H2O- or CO2-splitting materials. Phys. Rev. B 80, 245119 (2009).CrossRefGoogle Scholar